We thank the Ministere de la Recherche et de l’Enseigne-
ment Supe
CNRS, the Re
137104).
´
rieur, the Institut Universitaire de France, the
´
gion Bretagne and the ANR (PHOSHELIX-
Notes and references
1 (a) T. J Katz, Angew. Chem., Int. Ed., 2000, 39, 1921; (b) A.
Urbano, Angew. Chem., Int. Ed., 2003, 42, 3986; (c) A. Rajca, M.
Miyasaka, M. Pink, H. Wang and S. Rajca, J. Am. Chem. Soc.,
2004, 126, 15211; (d) R. H. Martin, Angew. Chem., Int. Ed. Engl.,
1974, 13, 649; (e) M. S. Gin, T. Yokozawa, R. B. Prince and J. S.
Moore, J. Am. Chem. Soc., 1999, 121, 2643; (f) L. Pu, Chem. Rev.,
2004, 104, 1687.
2 (a) For metal complexes of phosphorus-containing helicenes, see:
R. El-Abed, F. Aloui, J.-P. Genet, B. Ben-Hassine and A. Mar-
inetti, J. Organomet. Chem., 2007, 692, 1156; (b) for other com-
plexes containing helicenes, see: T. J. Katz, A. Sudhakar, M. F.
Teasley, A. M. Gilbert, W. E. Geiger, M. P. Robben, M. Wuensch,
M. D. Ward, C. Nuckolls, T. J. Katz and L. Castellanos, J. Am.
Chem. Soc., 1993, 115, 3182; (c) Y. Dai and T. J. Katz, J. Org.
Chem., 1997, 62, 1274.
Fig. 3 UV-visible spectra of free helicene 2b, and of its PdII- (3b) and
CuI- (4b) complexes in CH2Cl2.
As observed for the square planar PdII complexes, (i) the
coordination of heteroditopic helicenes 2a,b on tetrahedral
CuI centres does not affect their structure, and (ii) the co-
ordination is highly stereoselective. Among the numerous
theoretically possible stereoisomers, only two (complex 4a)
and one (complex 4b) diastereoisomers were found in the solid
state. Note that the diastereoisomers of 4a differ only by the
conformation of the flexible –(CH2)4– moiety grafted on to the
phosphole rings. This result demonstrates the versatility of
supramolecular coordination-driven chemistry in generating
structural diversity in the field of helicoidal p-conjugated
systems. In fact, starting from one programmed heteroditopic
P,N-helicene such as 2a,b, air-stable chiral p-conjugated as-
semblies can be readily obtained in an highly stereoselective
way upon coordination on metal ions having different coordi-
nation geometries.
3 (a) O. Maury and H. Le Bozec, Acc. Chem. Res., 2005, 38, 691; (b)
N. Giuseppone, J.-L. Schmitt and J.-M. Lehn, J. Am. Chem. Soc.,
2006, 128, 16748 and references therein; (c) S. Kitagawa, R.
Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43, 2334; (d)
C. A. Mirkin and B. J. Hollidays, Angew. Chem., Int. Ed., 2001, 40,
2022.
4 (a) C. Fave, M. Hissler, K. Se
Reau, Chem. Commun., 2002, 1674; (b) M. Sauthier, F. Leca, L.
Toupet and R. Reau, Organometallics, 2002, 21, 1591; (c) M.
Sauthier, B. Le Guennic, V. Deborde, L. Toupet, J.-F. Halet and
R. Reau, Angew. Chem., Int. Ed., 2001, 40, 228; (d) F. Leca, M.
Sauthier, V. Deborde, L. Toupet and R. Reau, Chem.–Eur. J.,
2003, 9, 3785; (e) F. Leca, C. Lescop, E. Rodriguez, K. Costuas, J.-
F. Halet and R. Reau, Angew. Chem., Int. Ed., 2005, 44, 4362; (f)
B. Nohra, S. Graule, C. Lescop and R. Reau, J. Am. Chem. Soc.,
2006, 128, 3520; (g) T. Baumgartner and R. Reau, Chem. Rev.,
2006, 106, 4681.
nechal, I. Ledoux, J. Zyss and R.
´ ´
´
´
´
´
Finally, two important features are worth noting that
illustrate the potential functionality of these metallohelicenes.
First, the p–p* transition of phosphole-modified helicenes 2a,b
are hardly perturbed upon coordination on the metal centres,
but new transitions of low intensity are observed at higher
wavelength (lmax 4450 nm, Fig. 3). These low energy UV-Vis
absorptions, which are due to charge transfer involving the
metal and the 2-pyridylphosphole ligand,4a–d reveal that the
coordinated p-conjugated helicenes are electronically coupled
with the metal centres. It is interesting to note that these long
wavelengths absorptions are more red-shifted for the PdII-
complexes than for their CuI-analogues (Fig. 3), showing that
the optical properties of P,N-helicenes 2a,b can be tuned by
coordination. Secondly, helicene complexes 3b and 4b aggre-
gate into infinite columns in the solid state due to intermole-
cular p-stacking of the helicene moieties (intermolecular
distances, 3.5–3.6 A) (Fig. 2). This type of supramolecular
organization, is crucial in obtaining helicene-based materials
with appealing properties (NLO-phores, circularly polarized
materials, . . .).11
´
´
´
5 (a) See ESI.w For the synthesis of azahelicenes, see: D. C. Har-
rowven, I. L. Guy and L. Nanson, Angew. Chem., Int. Ed., 2006,
45, 2242; (b) K. Schmidt, S. Brovelli, V. Coropceanu, J.-L. Bredas,
´
C. Bazzini, T. Caronna, R. Tubino and F. J. Meinardi, J. Phys.
Chem. A, 2006, 110, 11018.
6 (a) P. J. Fagan, W. A. Nugent and J. C. Calabrese, J. Am. Chem.
Soc., 1994, 116, 1880; (b) P. J. Fagan and W. A. Nugent, J. Am.
Chem. Soc., 1988, 110, 2310.
7 The inversion barrier of phospholes is ca. 15 kcal molÀ1, see: L. D.
Quin and G. S. Quin, in Phosphorus–Carbon Heterocyclic Chem-
istry: The Rise of a New Domain, ed. F. Mathey, Elsevier Science
Ltd, Oxford, 2001.
8 CCDC 651119–651122 for 2a, 4b, 4a and 3b, respectively. For
crystallographic data in CIF or other electronic format see DOI:
10.1039/b714340k.
9 (a) C. Hay, M. Hissler, C. Fischmeister, J. Rault-Berthelot, L.
Toupet, L. Nyulaszi and R. Re
H.-C. Su, O. Fadhel, C.-J. Yang, T.-Y. Cho, C. Fave, M. Hissler,
C.-C. Wu and R. Reau, J. Am. Chem. Soc., 2006, 128, 983.
´
au, Chem.–Eur. J., 2001, 7, 4222; (b)
´
10 (a) R. G. Pearson, Inorg. Chem., 1973, 12, 712; (b) O. Mamula and
A. von Zelewsky, J. Chem. Soc., Dalton Trans., 2001, 219; (c) J. N.
Harvey, K. M. Heslop, A. G. Orpen and P. G. Pringle, Chem.
Commun., 2003, 278.
11 (a) L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma,
Chem. Rev., 2001, 101, 4071; (b) J. J. L. M. Cornelissen, A. E.
Rowan, R. J. M. Nolte and N. A. J. M. Sommerdijk, Chem. Rev.,
2001, 101, 4039; (c) C. Nuckolls, T. J. Katz, G. Katz, P. J. Collings
and L. Castellanos, J. Am. Chem. Soc., 1999, 121, 79; (d) A. J.
Lovinger, C. Nuckolls and T. J. Katz, J. Am. Chem. Soc., 1998,
120, 264; (e) C. Nuckolls, T. J. Katz and L. Castellanos, J. Am.
Chem. Soc., 1996, 118, 3767.
In conclusion, we have described a rational and simple
synthetic approach to a variety of nano-scale chiral p-con-
jugated molecules via stereoselective coordination of hetero-
ditopic phosphole-modified azahelicenes on metal centres. The
high stereoselectivity of this method, giving rise to a reduced
number of enantiomeric pairs, should facilitate the isolation of
enantiomerically pure substances. Extension of this versatile
synthetic methodology to phosphole-modified azahelicenes
with longer conjugated systems is under active investigation.
ꢀc
This journal is The Royal Society of Chemistry 2008
852 | Chem. Commun., 2008, 850–852