J.-L. Zhao et al. / Tetrahedron Letters 49 (2008) 1476–1479
1479
K. J. Org. Chem. 2004, 69, 146; (c) Gathergood, N.; Zhuang, W.;
Jogensen, K. A. J. Am. Chem. Soc. 2000, 122, 12517; (d) Zhuang, W.;
Gathergood, N.; Hazell, R. G.; Jogensen, K. A. J. Org. Chem. 2001,
66, 1009.
OH
OMe
1) K2CO3, THF
2) CH3I
COOEt
OH
5a
COOEt
OH
(S)-7
3. Erker, G.; van der Zeijden, A. A. H. Angew. Chem., Int. Ed. 1990, 29,
512.
4. For reviews, see: (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed.
2004, 43, 5138; (b) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 2006, 45, 1520; (c) Special issue on organocatalysis: Houk, K. N.,
List, B., Eds.; Acc. Chem. Res. 2004, 37, 487.
F3C
F3C
Scheme 2.
5. (a) Torok, B.; Abid, M.; London, G. Angew. Chem., Int. Ed. 2005, 44,
3086; (b) Li, H.; Wang, Y. Q.; Deng, L. Org. Lett. 2006, 8, 4063.
6. (a) Brandes, S.; Bella, M.; Kjarsgaard, A.; Jorgensen, K. A. Angew.
Chem., Int. Ed. 2006, 45, 1147; (b) Liu, T. Y.; Cui, H. L.; Chai, Q.;
Long, J.; Li, B. J.; Wu, Y.; Ding, L. S.; Chen, Y. C. Chem. Commun.
2007, 2228.
To assign the absolute configuration, 5a was converted
to corresponding methylation product 7 under mild condi-
tions (Scheme 2). Compared the rotation sign of 7 ([a]D
+17.1) with the known compound,8 the absolute configura-
tion of 5a was assigned as S.
7. (a) Nelson, D. W.; Owens, J.; Hiraldo, D. J. Org. Chem. 2001, 66,
2572; (b) Surya Prakash, G. K.; Manadal, M.; Olah, G. A. Angew.
Chem., Int. Ed. 2001, 40, 589; (c) Bravo, P.; Crucianelli, M.; Vergani,
B.; Zanda, M. Tetrahedron Lett. 1998, 39, 9151.
8. Zhao, J. L.; Liu, L.; Sui, Y.; Liu, Y. L.; Wang, D.; Chen, Y. J. Org.
Lett. 2006, 8, 6127.
9. The examples of 6-OH cinchona alkaloid bearing 90-OR type
catalysts, see: (a) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem.
Soc. 2004, 126, 9906; (b) Li, H.; Song, J.; Liu, X.; Deng, L. J. Am.
Chem. Soc. 2005, 127, 8948; (c) Li, H.; Wang, Y.; Tang, L.; Wu, F.;
Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed.
2005, 44, 105; (d) Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. J.
Am. Chem. Soc. 2006, 128, 8156; (e) Li, H.; Wang, B.; Deng, L. J. Am.
Chem. Soc. 2006, 128, 732; (f) Wang, Y.; Liu, X.; Deng, L. J. Am.
Chem. Soc. 2006, 128, 3928.
In conclusion, an enantioselective Friedel–Crafts alkyl-
ation of simple phenols with trifluoropyruvate catalyzed
by cinchona alkaloid derivatives was achieved. The method
provides a practical synthetic approach to optically active
CF3-containing a-hydoxyl-a-aryl-carboxylate compounds
bearing functional phenolic hydroxyl groups.
Acknowledgments
We thank the National Natural Science Foundation of
China and The Chinese Academy of Sciences for financial
support.
10. Typical experimental procedure: To
a solution of 2h (7.2 mg,
References and notes
0.015 mmol) in freshly distilled CH2Cl2 (0.3 mL) phenol 4a
(14.1 mg, 0.15 mmol) was added at ambient temperature, followed
by stirring at ꢀ25 °C for 10 min. Ethyl trifluoro- pyruvate 3 (24 lL,
30.6 mg, 0.18 mmol) was injected under Ar atmosphere. The mixture
was stirred at the same temperature for 72 h. The mixture was purified
by flash chromatography on silica gel (eluent: petroleum ether/ethyl
acetate = 8:1 v/v) to give 5a as a colorless oil (30.1 mg, 76% yield with
86% ee).
1. For reviews, see: Olah, G. A.; Khrisnamurti, R.; Surya Prakashi, G.
K. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon:
New York, 1991; Vol. 3, pp 293–339.
2. For examples of Lewis acid-catalyzed asymmetric Friedel–Crafts
alkylation, see: (a) Bandini, M.; Melloni, A.; Umani-Ronchi, A.
Angew. Chem., Int. Ed. 2004, 43, 550; (b) Yuan, Y.; Wang, X.; Ding,