1704
S. Cicchi et al. / Tetrahedron Letters 49 (2008) 1701–1705
some of the gelating properties of 15 and possesses a free
hydroxyl functionality that can be used as a versatile linker
for attaching new molecular fragments. To demonstrate
this possibility we synthesized the two esters 1713 and 18
(Scheme 2).
Unexpectedly, the synthesis of compounds 17 and 18
required refluxing THF for several hours for completion
and the yields resulted were affected by this reaction
conditions.
Compound 18 revealed that it was unable to form gel in
any solvent tested while compound 17 revealed that it was
an efficient gelator able to gel cyclohexane down to a crit-
ical concentration of 1 mg/mL (Table 1). A clear demon-
stration of the stability of the cyclohexane gel of 17 was
offered by the circular dichroism (CD) spectra registered
at different temperatures that revealed the persistence of
the Cotton effect up to 55 °C (Fig. 4). The presence of
CD effect is peculiar of the gel state,14 since in solution
compound 17 is CD silent, in analogy with what already
observed for compound 2.6a
The arrangement of substituted pyrrolidine units around
a central scaffold revealed a useful approach to the synthe-
sis of an efficient organogelator. This result was not pre-
dictable as demonstrated by the failure represented by the
antracendicarboxylic acid derivative 9. Compound 15
revealed to gel several different apolar and polar solvents
with a remarkable value of critical concentration and
Tgel–sol. The main goal of this work was the production
of a versatile scaffold for further substitution with other
molecular fragments. On this aspect compound 16 gave
some contradictory results: the derivatization with a simple
ester to afford compound 17 gave a good gelator while the
correspondent sulphonate 18 failed to form any gel. Our
actual effort is aimed to the development of this synthetic
approach varying the nature and the length of the side
arm while preserving the two gelating pyrrolidine units.
Nevertheless we also plan to verify the versatility of this
methodology using other gelating units described in the
literature.
Although it cannot be a quantitative observation it is
worthwhile to note the remarkable difference of the specific
Acknowledgments
25
rotatory power ð½aꢁD Þ in solution and in the gel state (Table
The authors acknowledge MIUR for financial support
(FIRB—RBNE033KMA) and CSGI. Brunella Innocenti
and Maurizio Passaponti are acknowledged for technical
assistance.
2). The time required to obtain the formation of a stable,
completely transparent, gel in cyclohexane (around
30 min) also allowed for the measurement of the specific
rotatory power in cyclohexane solution. These data suggest
that during the formation of the self-assembled fibrillar
networks new chiral aggregates are formed, which are
responsible of the specific rotatory power variations.
References and notes
1. (a) Sangeetha, N.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821; (b)
George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489; (c) Top.
Curr. Chem 2005, 256; Chapters 1–7; (d) van Esch, J. H.; Feringa, B.
L. Angew. Chem., Int. Ed. 2000, 39, 2263; (e) Terech, P.; Weiss, R. G.
Chem. Rev. 1997, 97, 3133.
2. (a) De Jong, J. J. D.; Tiemersma-Wegman, T. D.; Van Esch, J. H.;
Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 13804; (b) Shirakawa, M.;
Fujita, N.; Shinkai, S. J. Am. Chem. Soc. 2003, 125, 9902; (c)
Shirakawa, M.; Fujita, N.; Shimakoshi, H.; Hisaeda, Y.; Shinkai, S.
Tetrahedron 2006, 62, 2016; (d) Mukhopadhyay, P.; Iwashita, Y.;
Shirakawa, M.; Kawano, S.; Fujita, N.; Shinkai, S. Angew. Chem.,
Int. Ed. 2006, 45, 1592; (e) Shirakawa, M.; Fujita, N.; Tani, T.;
Kaneko, K.; Ojima, M.; Fujii, A.; Ozaki, M.; Shinkai, S. Chem. Eur.
J. 2007, 13, 4155; (f) Miravet, J. F.; Escuder, B. Org. Lett. 2005, 7,
479; (g) Chang, X.; Li, H.; Yang, Y.; Xu, H.; Yang, X.; Ma, Y. J. Sol–
Gel Sci. Technol. 2007, 43, 15; (h) Camerel, F.; Ziessel, R.; Donnio,
B.; Bourgogne, C.; Guillon, D.; Schmutz, M.; Iacovita, C.; Bucher, J.
Angew. Chem., Int. Ed. 2007, 46, 2659; (i) Kobayashi, S.; Hamasaki,
N.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. J. Am. Chem.
Soc. 2002, 124, 6550; (j) Ajayaghosh, A.; George, S. J.; Praveen, V. K.
Angew. Chem., Int. Ed. 2003, 42, 332.
17 1mg/ml cyclohexane
50
0
30 ˚C
(45 ˚C)
(55 ˚C)
-50
200
250
300
350
400
nm
3. Molecular Gels: Materials with Self-Assembled Fibrillar Networks;
Weiss, R. G., Terech, P., Eds.; Springer: Dordrecht, 2006.
4. (a) Kato, T.; Kondo, G.; Hanabusa, K. Chem. Lett. 1998, 193; (b)
Diaz, D. D.; Finn; M. G.; Fokin, V. V. PCT Int. Appl. 2007, WO
2007027493, CAN 146:317723.
Fig. 4. CD spectra of compound 17 at different temperatures.
Table 2
Specific rotator power values for 15 and 17
5. Kamikawa, Y.; Kato, T. Langmuir 2007, 23, 274.
6. (a) Cicchi, S.; Ghini, G.; Lascialfari, L.; Brandi, A.; Betti, F.; Berti,
D.; Ferrati, S.; Baglioni, P. Chem. Commun. 2007, 1424; (b) Cicchi, S.;
Faggi, C.; Ghini, G.; Guerri, A.; Parlanti, J. Acta Crystallogr. E 2007,
E63, o3082.
7. (a) Afonso, C. A. M.; Lourenco, N. M. T.; Rosatella, A. D. A.
Molecules 2006, 11, 81–102; (b) Mason, P. V.; Champness, N. R.;
25
25
Condition
½aꢁD 15
½aꢁD 17
CH2Cl2 solution, c 0.1
Cyclohexane solution, c 0.1
Cyclohexane gel, c 0.1
ꢀ3.2
ꢀ6
+67
+235
+576
+113