Scheme 1. Synthesis of sn-2-AO-LPA Intermediates 9a and 9b
leading to many changes in biological activity.9-12 Only a
strongly nucleophilic aminooxy (AO) group at the sn-2
position. AO compounds are frequently employed as potent
inhibitors of pyridoxal-5-phosphate-dependent enzymes, such
as aminotransferases, serine hydroxymethyltransferase, ty-
rosine decarboxylase, cystationase, and ornithine decarbox-
ylase, whereby the aminooxy moiety forms a stable oxime
with the aldehyde group present on the cofactor.18-22 AO
analogues have also been demonstrated to function in Vitro
as potent antimalarial agents.23
We used the Mitsunobu reaction to introduce the AO
functionality in stereocontrolled manner using straightforward
protection and deprotection steps, thus elaborating an efficient
synthetic approach to produce enantiomerically pure sn-2
AO-LPA analogues. Herein we describe the asymmetric total
syntheses of two sn-2-AO LPA analogues, as well as
evaluation in pharmacological, biochemical, and cell biologi-
cal assays that reveal unexpected agonist and antagonist
activities.
few analogues of LPA feature modifications only at the sn-2
position (Figure 1). For example, OMPT (1-oleoyl-2-O-
methyl-rac-glycerophosphothioate), in either the racemic13
or optically pure14 forms, are potent agonists for the LPA3
receptor. The HE-LPA (hydroxyethoxy-LPA) analogues15 are
modest agonists for LPA3 with 10-fold lower potency than
the parent oleoyl LPA. Finally, the sn-2-F LPA analogs16
show relatively weak agonist activity for all LPA receptor
isoforms.
Recently, series of novel cytotoxic phospholipids, LPA-
like serine amide phosphates (SAPs) were synthesized and
demonstrated to be low micromolar inhibitors of prostate
tumor cell proliferation.17 The key element of this structure
was the presence of a primary amine at the sn-2 position.
Rather than introduce a strongly basic group into the LPA
structure, our approach was to introduce the less basic but
(7) Noguchi, K.; Ishii, S.; Shimizu, T. J. Biol. Chem. 2003, 278, 25600-
25606.
Synthesis. The synthesis of sn-2-AO LPA started with
benzylation of (S)-solketal (1) (Scheme 1), followed by
removal of the isopropylidene with an acidic ion-exchange
resin,24,25 to give intermediate diol 2. Next, TBDMS was
introduced26,27 at the primary hydroxyl group at 0-3 °C to
produce precursor 3, which was transformed Via a Mitsunobu
reaction at 0 °C28,29 into phthalimide derivative 4 with clean
(8) Umezu-Goto, M.; Tanyi, J.; Lahad, J.; Liu, S.; Yu, S.; Lapushin, R.;
Hasegawa, Y.; Lu, Y.; Trost, R.; Bevers, T.; Jonasch, E.; Aldape, K.; Liu,
J.; James, R. D.; Ferguson, C. G.; Xu, Y.; Prestwich, G. D.; Mills, G. B. J.
Cell. Biochem. 2004, 92, 1115-1140.
(9) Jiang, G.; Xu, Y.; Fujiwara, Y.; Tsukahara, T.; Tsukahara, R.;
Gajewiak, J.; Tigyi, G.; Prestwich, G. D. ChemMedChem 2007, 2, 679-
690.
(10) Xu, Y.; Aoki, J.; Shimizu, K.; Umezu-Goto, M.; Hama, K.;
Takanezawa, Y.; Yu, S.; Mills, G. B.; Arai, H.; Qian, L.; Prestwich, G. D.
J. Med. Chem. 2005, 48, 3319-3327.
(11) Prestwich, G. D.; Xu, Y.; Qian, L.; Gajewiak, J.; Jiang, G. Biochem.
Soc. Trans 2005, 33, 1357-1361.
(18) Baskaran, N.; Prakash, V.; Savithri, H. S.; Radhakrishnan, A. N.;
Appaji Rao, N. Biochemistry 1989, 28, 9613-9617.
(19) Beeler, T.; Churchich, J. E. J. Biol. Chem. 1976, 251, 5267-5271.
(20) Rosenthal, G. A. Eur. J. Biochem. 1981, 114, 301-304.
(21) Rosenthal, G. A. Life Sci. 1997, 60, 1635-1641.
(22) Worthen, D. R.; Ratliff, D. K.; Rosenthal, G. A.; Trifonov, L.;
Crooks, P. A. Chem. Res. Toxicol. 1996, 9, 1293-1297.
(23) Berger, B. Antimicrob. Agents Chemother. 2000, 44, 2540-2542.
(24) Ryan, M.; Smith, M. P.; Vinod, T. K.; Lau, W. L.; Keana, J. F. W.;
Griffith, O. H. J. Med. Chem. 1996, 39, 4366-4376.
(25) Heeb, N. V.; Nambiar, K. P. Tetrahedron Lett. 1993, 34, 6193-
6196.
(26) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190-
6191.
(27) Zhang, D.; Poulter, C. D. J. Am. Chem. Soc. 1993, 115, 1270-
1277.
(28) Mitsunobu, O.; Wada, M.; Sano, T. J. Am. Chem. Soc. 1972, 94,
679-680.
(12) Gajewiak, J.; Tsukahara, R.; Tsukahara, T.; Fujiwara, Y.; Yu, S.;
Lu, Y.; Mills, G. B.; Tigyi, G.; Prestwich, G. D. Chem. Med. Chem. 2007,
2, 1789-1798.
(13) Hasegawa, Y.; Erickson, J. R.; Goddard, G. J.; Yu, S.; Liu, S.;
Cheng, K. W.; Eder, A.; Bandoh, K.; Aoki, J.; Jarosz, R.; Schrier, A. D.;
Lynch, K. R.; Mills, G. B.; Fang, X. J. Biol. Chem. 2003, 278, 11962-
11969.
(14) Qian, L.; Xu, Y.; Hasegawa, Y.; Aoki, J.; Mills, G. B.; Prestwich,
G. D. J. Med. Chem. 2003, 46, 5575-5578.
(15) Qian, L.; Xu, Y.; Arai, H.; Aoki, J.; McIntyre, T. M.; Prestwich,
G. D. Org. Lett. 2003, 5, 4685-4688.
(16) Xu, Y.; Qian, L.; Prestwich, G. D. J. Org. Chem. 2003, 68, 5320-
5330.
(17) Gududuru, V.; Hurh, E.; Durgam, G. G.; Hong, S. S.; Sardar, V.
M.; Xu, H.; Dalton, J. T.; Miller, D. D. Bioorg. Med. Chem. Lett. 2004,
14, 4919-4923.
1112
Org. Lett., Vol. 10, No. 6, 2008