ORGANIC
LETTERS
2008
Vol. 10, No. 10
2027-2030
Enantiopure 1,5-Diols from Dynamic
Kinetic Asymmetric Transformation.
Useful Synthetic Intermediates for the
Preparation of Chiral Heterocycles
Karin Leijondahl, Linne´a Bore´n, Roland Braun, and Jan-E. Ba¨ckvall*
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm UniVersity,
SE-106 91 Stockholm, Sweden
Received March 1, 2008
ABSTRACT
Dynamic kinetic asymmetric transformation (DYKAT) of a series of 1,5-diols has been performed in the presence of Candida antarctica lipase
B (CALB), Pseudomonas cepacia lipase II (PS-C II), and ruthenium catalyst 4. The resulting optically pure 1,5-diacetates are useful synthetic
intermediates, which was demonstrated by the syntheses of both an enantiopure 2,6-disubstituted piperidine and an enantiopure 3,5-disubstituted
morpholine.
The combined metal- and enzyme-catalyzed dynamic kinetic
resolution (DKR) has developed into a useful method for
the synthesis of enantiopure secondary alcohols.1–3 The
simplicity and scalability of the method has attracted
industrial interest,4 and we recently demonstrated a laboratory
procedure5 on a 1 mol scale using a low catalytic loading.
The DKR of secondary alcohols can be extended to the
simultaneous DKRs of two chiral sec-alcohol centers, which
leads to a dynamic kinetic asymmetric transformation
(DYKAT) of diols.6,7 Recently, efficient procedures for
DYKAT of symmetric 1,3- and 1,4-diols were reported,7
using the second-generation catalyst system.2a,8
Chiral 1,5-diols are important synthetic intermediates for
the preparation of enantiomerically pure 2,6-disubstituted and
3,5-disubstituted six-membered heterocycles.9,10 In this com-
munication, we report on a DYKAT of 1,5-diols, leading to
diol derivatives in high diastereo- and enantioselectivities.
The diols used in this study for the DYKAT are shown in
Figure 1 (1a-g). The symmetrical diols 1b, 1c, 1e, 1f, and
(1) (a) Pa`mies, O.; Ba¨ckvall, J. E. Chem. ReV. 2003, 103, 3247–3262.
(b) Kim, M. J.; Ahn, Y.; Park, J. Curr. Opin. Biotechnol. 2002, 13, 578–
587. (c) Pa`mies, O; Ba¨ckvall, J. E. Trends Biotechnol. 2004, 22, 130–135.
(d) Mart´ın-Matute, B.; Ba¨ckvall, J. E. Opin. Chem. Curr. Biol. 2007, 11,
226–232. (e) Pellissier, H. Tetrahedron 2003, 59, 8291–8327. (f) Pellissier,
(6) (a) Persson, B. A.; Huerta, F. F.; Ba¨ckvall, J. E. J. Org. Chem. 1999,
64, 5237–5240. (b) Edin, M.; Mart´ın-Matute, B.; Ba¨ckvall, J. E. Tetrahe-
dron: Asymmetry 2006, 17, 708–715
(7) Mart´ın-Matute, B.; Edin, M.; Ba¨ckvall, J. E. Chem. Eur. J. 2006,
12, 6053–6061
(8) For a mechanistic study of the second-generation ruthenium catalyst,
.
H. Tetrahedron 2008, 64, 1563–1601
.
.
(2) (a) Mart´ın-Matute, B.; Edin, M.; Boga´r, K.; Kaynak, F. B.; Ba¨ckvall,
J. E. J. Am. Chem. Soc. 2005, 127, 8817–8825. (b) Mart´ın-Matute, B.;
see ref 2b
.
Åberg, J. B.; Edin, M.; Ba¨ckvall, J. E. Chem. Eur. J. 2007, 13, 6063–6072
.
(9) (a) Lieandro, E.; Maiorana, S.; Papagni, A.; Pryce, M.; Gerosa, A. Z.;
Riva, S. Tetrahedron: Asymmetry 1995, 6, 1891–1894. (b) Dave, R.; Sasaki,
A. Org. Lett. 2004, 6, 15–18
(3) (a) Kim, N.; Ko, S.-B.; Kwon, M. S.; Kim, M.-J.; Park, J. Org. Lett.
2005, 7, 4523–4526. (b) Norinder, J.; Boga´r, K.; Kanupp, L.; Ba¨ckvall,
.
J. E. Org. Lett. 2007, 9, 5095–5098
(4) Verzijl, G. K. M.; De Vries, J. G.; Broxterman, Q. B. WO 0190396
A1 20011129, CAN 136:4770.
.
(10) (a) Stereodefined 2,6-disubstituted piperidines occur as alkaloids
in nature: Strunzand, G. M.; Finlay, J. A. The alkaloids; Brossi, A., Ed.;
Academic Press: San Diego, 1986; Vol. 26, p 89. (b) Jones, T. H.; Blum,
M. S.; Robertsson, H. G. J. Nat. Prod. 1990, 53, 429–435. (c) Escolano,
(5) Boga´r, K.; Mart´ın-Matute, B.; Ba¨ckvall, J. E. Beilstein J. Org. Chem.
2007, 3, 50.
C.; Amat, M.; Bosch, J. Chem. Eur. J. 2006, 12, 8198–8207
.
10.1021/ol800468h CCC: $40.75
Published on Web 04/11/2008
2008 American Chemical Society