10.1002/cssc.201802126
ChemSusChem
COMMUNICATION
82; c) L. Yu, L. He, J. Chen, J. Zheng, L. Ye, H. Lin, Y. Yuan,
ChemCatChem 2015, 7, 1701-1707; d) J. Mitra, X. Zhou, T. Rauchfuss,
Green Chem. 2015, 17, 307-313; e) R. M. West, Z. Y. Liu, M. Peter, J.
A. Dumesic, ChemSusChem 2008, 1, 417-424.
a) Y. Zhu, C. Romain, C. K. Williams, Nature 2016, 540, 354-362; b) J.
N. Chheda, Y. Román-Leshkov, J. A. Dumesic, Green Chem. 2007, 9,
342-350; c) D. Liu, E. Y. X. Chen, ACS Catal. 2014, 4, 1302-1310; d) M.
Kim, Y. Su, A. Fukuoka, E. J. M. Hensen, K. Nakajima, Angew. Chem.
Int. Ed. 2018; e) R. F. A. Gomes, Y. N. Mitrev, S. P. Simeonov, C. A. M.
Afonso, ChemSusChem 2018, 11, 1612-1616.
a) M. Mascal, E. B. Nikitin, Angew. Chem. Int. Ed. 2008, 47, 7924-7926;
b) Mascal, M. (University of California), US2009234142 (A1), 2009; c)
M. Mascal, E. B. Nikitin, ChemSusChem 2009, 2, 859-861; d) W. Yang,
A. Sen, ChemSusChem 2011, 4, 349-352.
a) T. G. Frihed, M. Bols, C. M. Pedersen, Chem. Rev. 2015, 115, 3615-
3676; b) J. Kuivanen, P. Richard, AMB Express 2016, 6, 27; c) M.
Nitschke, S. G. V. A. O. Costa, Trends Food Sci. Technol. 2007, 18,
252-259; d) R. J. van Putten, A. S. Dias, E. de Jong, in Catalytic
Process Development for Renewable Materials (Eds.: P. Imhof, J. C.
van der Waal), Wiley-VCH, Weinheim, 2013, pp. 81–117.
without extensive purification. A new approach was evaluated to
achieve highly selective synthesis of the important liquid biofuel
candidate DMF starting from MF under rather mild conditions
using a transfer hydrogenation process and avoiding expensive
catalysts. Comparison of synthetic utility of MF and HMF in
benzoin and aldol condensation reactions yielding long-chain
alkane precursors showed higher efficiency in the case of MF.
To summarize, the lower oxygen content, better stability and
excellent synthetic utility reflect the highly promising potential of
MF as a bio-derived platform for biofuels development.
[7]
[8]
[9]
Acknowledgements
[10] a) X. Li, P. Jia, T. Wang, ACS Catal. 2016, 6, 7621-7640; b) A. S.
Kashin, K. I. Galkin, E. A. Khokhlova, V. P. Ananikov, Angew. Chem. Int.
Ed. 2016, 55, 2161-2166; c) V. Heguaburu, J. Franco, L. Reina, C.
Tabarez, G. Moyna, P. Moyna, Catal. Commun. 2012, 27, 88-91; d) J.
Tuteja, S. Nishimura, K. Ebitani, Bull. Chem. Soc. Jpn. 2012, 85, 275-
281.
[11] a) B. Girisuta, L. P. B. M. Janssen, H. J. Heeres, Green Chem. 2006, 8,
701; b) S. J. Dee, A. T. Bell, ChemSusChem 2011, 4, 1166-1173; c) S.
K. R. Patil, C. R. F. Lund, Energy & Fuels 2011, 25, 4745-4755; d) Y.
Román-Leshkov, J. N. Chheda, J. A. Dumesic, Science 2006, 312,
1933-1937.
This study was supported by the Russian Science Foundation
(Grant RSF 17-13-01176).
Keywords: plant biomass • deoxy carbohydrates • biofuels • 5-
(hydroxymethyl)furfural
dimethylfuran
• 5-methylfurfural • alkanes • 2,5-
[1]
a) A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J.
[12] a) T. Wang, M. W. Nolte, B. H. Shanks, Green Chem. 2014, 16, 548-
572; b) H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007,
316, 1597-1600.
[13] a) J. B. Binder, A. V. Cefali, J. J. Blank, R. T. Raines, Energy Environ.
Sci. 2010, 3, 765; b) J. B. Binder, R. T. Raines, J. Am. Chem. Soc.
2009, 131, 1979-1985.
Cairney, C. A. Eckert, W. J. Frederick, Jr., J. P. Hallett, D. J. Leak, C. L.
Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science
2006, 311, 484-489; b) C. O. Tuck, E. Pérez, I. T. Horváth, R. A.
Sheldon, M. Poliakoff, Science 2012, 337, 695-699; c) J. J. Bozell,
Science 2010, 329, 522-523; d) T. P. Vispute, H. Zhang, A. Sanna, R.
Xiao, G. W. Huber, Science 2010, 330, 1222-1227; e) E. M. Rubin,
Nature 2008, 454, 841-845; f) D. W. Wakerley, M. F. Kuehnel, K. L.
Orchard, K. H. Ly, T. E. Rosser, E. Reisner, Nat. Energy 2017, 2,
17021; g) W. Leitner, J. Klankermayer, S. Pischinger, H. Pitsch, K.
Kohse-Höinghaus, Angew. Chem. Int. Ed. 2017, 56, 5412-5452; h) W.
Leitner, E. A. Quadrelli, R. Schlögl, Green Chem. 2017, 19, 2307-2308;
i) X. Zhang, Green Chem. 2016, 18, 5086-5117; j) A. Hussain, S. M.
Arif, M. Aslam, Renewable Sustainable Energy Rev. 2017, 71, 12-28; k)
D. M. Alonso, J. Q. Bond, J. A. Dumesic, Green Chem. 2010, 12, 1493;
l) J. Artz, T. E. Muller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg,
A. Bardow, W. Leitner, Chem. Rev. 2018, 118, 434-504; m) R.
Ciriminna, M. Pagliaro, Org. Process Res. Dev. 2013, 17, 1479-1484.
a) G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-
4098; b) E. L. Kunkes, D. A. Simonetti, R. M. West, J. C. Serrano-Ruiz,
C. A. Gärtner, J. A. Dumesic, Science 2008, 322, 417-421; c) Z. Sun, G.
Bottari, A. Afanasenko, M. C. A. Stuart, P. J. Deuss, B. Fridrich, K.
Barta, Nat. Catal. 2018, 1, 82-92; d) L. T. Mika, E. Cséfalvay, A.
Németh, Chem. Rev. 2018, 118, 505-613; e) Q. Xia, Z. Chen, Y. Shao,
X. Gong, H. Wang, X. Liu, S. F. Parker, X. Han, S. Yang, Y. Wang, Nat.
Commun. 2016, 7, 11162; f) P. S. Nigam, A. Singh, Prog. Energy
Combust. Sci. 2011, 37, 52-68; g) A. Deneyer, T. Renders, J. Van Aelst,
S. Van den Bosch, D. Gabriels, B. F. Sels, Curr. Opin. Chem. Biol.
2015, 29, 40-48; h) J. P. Lange, E. van der Heide, J. van Buijtenen, R.
Price, ChemSusChem 2012, 5, 150-166; i) A. J. J. E. Eerhart, M. K.
Patel, A. P. C. Faaij, Biofuels, Bioprod. Biorefin. 2015, 9, 307-325; j) J.
Wang, X. Liu, B. Hu, G. Lu, Y. Wang, RSC Adv. 2014, 4, 31101-31107.
S. Shylesh, A. A. Gokhale, C. R. Ho, A. T. Bell, Acc Chem Res 2017,
50, 2589-2597.
[14] a) Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature
2007, 447, 982-985; b) G. H. Wang, J. Hilgert, F. H. Richter, F. Wang,
H. J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schuth, Nat. Mater.
2014, 13, 293-300; c) B. Saha, M. M. Abu-Omar, ChemSusChem 2015,
8, 1133-1142; d) Y. Qian, L. Zhu, Y. Wang, X. Lu, Renewable
Sustainable Energy Rev. 2015, 41, 633-646; e) K. L. Deutsch, B. H.
Shanks, J. Catal. 2012, 285, 235-241.
[15] a) L. Hu, L. Lin, S. Liu, Ind. Eng. Chem. Res. 2014, 53, 9969-9978; b) P.
Yang, Q. Cui, Y. Zu, X. Liu, G. Lu, Y. Wang, Catal. Commun. 2015, 66,
55-59; c) J. Luo, H. Yun, A. V. Mironenko, K. Goulas, J. D. Lee, M.
Monai, C. Wang, V. Vorotnikov, C. B. Murray, D. G. Vlachos, P.
Fornasiero, R. J. Gorte, ACS Catal. 2016, 6, 4095-4104; d) H. Li, W.
Zhao, Z. Fang, Appl. Catal., B 2017, 215, 18-27; e) J. Jae, W. Zheng, R.
F. Lobo, D. G. Vlachos, ChemSusChem 2013, 6, 1158-1162.
[16] a) A. J. Kumalaputri, G. Bottari, P. M. Erne, H. J. Heeres, K. Barta,
ChemSusChem 2014, 7, 2266-2275; b) M.-Y. Chen, C.-B. Chen, B.
Zada, Y. Fu, Green Chem. 2016, 18, 3858-3866.
[17] a) F. A. Kucherov, L. V. Romashov, K. I. Galkin, V. P. Ananikov, ACS
Sustainable Chem. Eng. 2018, 6, 8064-8092; b) J. Gmeiner, M.
Seibicke, S. Behrens, B. Spliethoff, O. Trapp, ChemSusChem 2016, 9,
583-587; c) V. V. Stonkus, Z. G. Yuskovets, M. V. Shimanskaya, Chem.
Heterocycl. Compd. 1990, 26, 1214-1218.
[18] a) S. Dutta, M. Mascal, ChemSusChem 2014, 7, 3028-3030; b) T.
Thananatthanachon, T. B. Rauchfuss, Angew. Chem. Int. Ed. 2010, 49,
6616-6618; c) L. Tao, T.-H. Yan, W. Li, Y. Zhao, Q. Zhang, Y.-M. Liu, M.
M. Wright, Z.-H. Li, H.-Y. He, Y. Cao, Chem 2018, DOI:
10.1016/j.chempr.2018.1007.1007.
[2]
[3]
[4]
[19] J. M. Khurana, A. Gogia, Org. Prep. Proced. Int. 1997, 29, 1-32.
[20] A. Boyer, M. Lautens, Angew. Chem. Int. Ed. 2011, 50, 7346-7349.
[21] a) G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, Science
2005, 308, 1446-1450; b) A. D. Sutton, F. D. Waldie, R. Wu, M. Schlaf,
L. A. Silks, 3rd, J. C. Gordon, Nat. Chem. 2013, 5, 428-432; c) L. Wu, T.
Moteki, A. A. Gokhale, D. W. Flaherty, F. D. Toste, Chem 2016, 1, 32-
58; d) H. Li, A. Riisager, S. Saravanamurugan, A. Pandey, R. S.
Sangwan, S. Yang, R. Luque, ACS Catal. 2017, 8, 148-187; e) Y.
Nakagawa, S. Liu, M. Tamura, K. Tomishige, ChemSusChem 2015, 8,
1114-1132; f) U. Addepally, C. Thulluri, Fuel 2015, 159, 935-942; g) H.
Zang, K. Wang, M. Zhang, R. Xie, L. Wang, E. Y. X. Chen, Catal. Sci.
Technol. 2018, 8, 1777-1798; h) S. Li, F. Chen, N. Li, W. Wang, X.
Sheng, A. Wang, Y. Cong, X. Wang, T. Zhang, ChemSusChem 2017,
10, 711-719; i) J. Keskiväli, P. Wrigstedt, K. Lagerblom, T. Repo, Appl.
Catal., A 2017, 534, 40-45; j) Y. Jing, Q. Xia, J. Xie, X. Liu, Y. Guo, J.-j.
Zou, Y. Wang, ACS Catal. 2018, 8, 3280-3285.
a) J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539; b) R. J. van
Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres,
J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597; c) M. A. Mellmer, C.
Sanpitakseree, B. Demir, P. Bai, K. Ma, M. Neurock, J. A. Dumesic, Nat.
Catal. 2018, 1, 199-207; d) K. Gupta, R. K. Rai, S. K. Singh,
ChemCatChem 2018; e) A. Bohre, S. Dutta, B. Saha, M. M. Abu-Omar,
ACS Sustainable Chem. Eng. 2015, 3, 1263-1277.
a) P. Wrigstedt, J. Keskiväli, J. E. Perea-Buceta, T. Repo,
ChemCatChem 2017, 9, 4244-4255; b) F. van der Klis, J. van Haveren,
D. S. van Es, J. H. Bitter, ChemSusChem 2017, 10, 1460-1468; c) K. I.
Galkin, E. A. Krivodaeva, L. V. Romashov, S. S. Zalesskiy, V. V.
Kachala, J. V. Burykina, V. P. Ananikov, Angew. Chem. Int. Ed. 2016,
55, 8338-8342; d) R. Petkewich, Chem. Eng. News 2007, 85, 8; e) P.
Mäki-Arvela, E. Salminen, T. Riittonen, P. Virtanen, N. Kumar, J.-P.
Mikkola, Int. J. Chem. Eng. 2012, 2012, 1-10; f) Y. Jiang, X. Wang, Q.
Cao, L. Dong, J. Guan, X. Mu, in Sustainable Production of Bulk
Chemicals (Ed.: M. Xian), Springer, Dordrecht, 2016, pp. 19-49; g) O. O.
James, S. Maity, L. A. Usman, K. O. Ajanaku, O. O. Ajani, T. O.
Siyanbola, S. Sahu, R. Chaubey, Energy Environ. Sci. 2010, 3, 1833.
a) J. Li, J. L. Liu, H. Y. Liu, G. Y. Xu, J. J. Zhang, J. X. Liu, G. L. Zhou,
Q. Li, Z. H. Xu, Y. Fu, ChemSusChem 2017, 10, 1436-1447; b) Q.
Meng, H. Zheng, Y. Zhu, Y. Li, J. Mol. Catal. A: Chem. 2016, 421, 76-
[5]
[22] a) J. Wilson, E. Y. X. Chen, ACS Sustainable Chem. Eng. 2016, 4,
4927-4936; b) L. Wang, E. Y. X. Chen, ACS Catal. 2015, 5, 6907-6917;
c) D. Liu, E. Y. X. Chen, Green Chem. 2014, 16, 964-981; d) D. Liu, Y.
Zhang, E. Y. X. Chen, Green Chem. 2012, 14, 2738; e) D. Liu, E. Y.
Chen, ChemSusChem 2013, 6, 2236-2239.
[6]
4
This article is protected by copyright. All rights reserved.