J. Am. Chem. Soc., 1985, 107, 972–980; H. C. Brown and
J. B. Campbell, Jr., J. Org. Chem., 1980, 45, 550–552.
14 For transition metal free coupling reaction using aryl halides, see:
N. E. Leadbeater and M. Marco, Angew. Chem., Int. Ed., 2003, 42,
1407–1409; C. J. Li, Angew. Chem., Int. Ed., 2003, 42, 4856–4858.
15 G. W. Kabalka and Z. Wu, Tetrahedron Lett., 2000, 41, 579–581;
G. W. Kabalka, Z. Wu, S. E. Trotman and X. Gao, Org. Lett., 2000, 2,
255–256; G. W. Kabalka, Z. Wu and Y. Ju, Tetrahedron, 2001, 57,
1663–1670; G. W. Kabalka, Z. Wu and Y. Ju, Tetrahedron Lett., 2000,
41, 5161–5164; G. W. Kabalka, Z. Wu and Y. Ju, Tetrahedron Lett.,
2001, 42, 6239–6241; G. W. Kabalka, Z. Wu and Y. Ju, Tetrahedron
Lett., 2001, 42, 5793–5796.
5 B. Breit, P. Demel and C. Studte, Angew. Chem., Int. Ed., 2004, 43,
3786–3789; K. Tissot-Croset and A. Alexakis, Tetrahedron Lett., 2004,
45, 7375–7378; V. Rosales, J. L. Zambrano and M. Demuth, J. Org.
Chem., 2002, 67, 1167–1170; T. L. Underiner, S. D. Paisley, J. Schmitter,
L. Lesheski and H. L. Goering, J. Org. Chem., 1989, 54, 2369–2374.
6 P. A. Evans and D. Uraguchi, J. Am. Chem. Soc., 2003, 125, 7158–7159;
M. A. Kacprzynski and A. H. Hoveyda, J. Am. Chem. Soc., 2004, 126,
10676–10681; K. E. Murphy and A. H. Hoveyda, J. Am. Chem. Soc.,
2003, 125, 4690–4691; M. I. Calaza, E. Hupe and P. Knochel, Org.
Lett., 2003, 5, 1059–1061; U. Piarulli, P. Daubos, C. Claverie, M. Roux
and C. Gennar, Angew. Chem., Int. Ed., 2003, 42, 234–236.
7 H. Chen and M.-Z. Deng, J. Organomet. Chem., 2000, 603, 189–193;
Y. Kobayashi, R. Mizojiri and E. Ikeda, J. Org. Chem., 1996, 61,
5391–5399.
8 Y. Kobayashi, Y. Tokoro and K. Watatani, Eur. J. Org. Chem., 2000,
3825–3834; Y. Kobayashi, K. Watatani and Y. Tokoro, Tetrahedron
Lett., 1998, 39, 7533–7536.
9 (a) L. Botella and C. Na´jera, J. Organomet. Chem., 2002, 663, 46–57; (b)
D. A. Alonso, C. Na´jera and M. C. Pacheco, J. Org. Chem., 2002, 67,
5588–5594; (c) J. Corte´s, M. Moreno-Manas and R. Pleixats, Eur. J.
Org. Chem., 2000, 239; (d) M. Moreno-Manas, F. Pajuelo and
R. Pleixats, J. Org. Chem., 1995, 60, 2396–2397.
16 G. W. Kabalka, Z. Wu and Y. Ju, Org. Lett., 2002, 4, 1491–1493.
17 G. W. Kabalka, Z. Wu and Y. Ju, Org. Lett., 2004, 6, 3929–3931.
18 A. Pelter, K. Smith and H. C. Brown, Borane Reagents, Academic Press,
New York, 1988.
19 Typical reaction procedure: boron trihalide (1.5 mmol), alkyne
(1.5 mmol), and dry dichloromethane (8 mL) were combined in a
25 mL flask under a nitrogen atmosphere and stirred for 1 hour. In a
separate flask, the allylic alcohol (1.6 mmol) in dry dichloromethane
(8 mL) was treated with n-butyllithium (1.0 mL of a 1.6 M solution in
hexanes) at 0 uC and stirred at room temperature for 1 hour. The second
solution was then transferred to the first flask and the mixture allowed
to stir at room temperature overnight. Water (20 mL) was added and
the reaction mixture was extracted with ethyl acetate and dried over
anhydrous MgSO4. The solvents were removed in vacuo and the product
purified by silica gel column chromatography using hexane as an eluent.
20 At this time, the experimental evidence cannot be used to identify
whether the migration of the vinyl group to the allylic center occurs with
inversion, retention, or racemization. Analogous studies involving chiral
benzylic alcohols (unpublished results) strongly support the formation of
cationic intermediates which would lead to epimerization at the
migration terminus. Further studies using chiral allylic alcohols are
underway.
10 D. Badone, M. Baron, R. Cardamone, A. Ielmini and U. Guzzi, J. Org.
Chem., 1997, 62, 7170–7173.
11 G. W. Kabalka, G. Dong and B. Venkataiah, Org. Lett., 2003, 5,
893–895.
12 H. Tsukamoto, M. Sato and Y. Kondo, Chem. Commun., 2004,
1200–1202.
13 L. Navarre, S. Darses and J.-P. Genet, Chem. Commun., 2004,
1108–1110.
2494 | Chem. Commun., 2005, 2492–2494
This journal is ß The Royal Society of Chemistry 2005