94
M.B. Hansen et al. / Journal of Controlled Release 164 (2012) 87–94
[16] M.M. Fretz, A. Høgset, G.A. Koning, W. Jiskoot, G. Storm, Cytosolic delivery of
liposomally targeted proteins induced by photochemical internalization, Pharm.
Res. 24 (11) (2007) 2040–2047.
[17] F.M. Muggia, Liposomal encapsulated anthracyclines: new therapeutic horizons,
Curr. Oncol. Rep. 3 (2) (2001) 156–162.
[45] C. Foged, H.M. Nielsen, S. Frokjaer, Phospholipase A2 sensitive liposomes for delivery
of small interfering RNA (siRNA), J. Liposome Res. 17 (3–4) (2007) 191–196.
[46] A.I. Elegbede, J. Banerjee, A.J. Hanson, S. Tobwala, B. Ganguli, R. Wang, X. Lu, D.K.
Srivastava, S. Mallik, Mechanistic studies of the triggered release of liposomal contents
by matrix metalloproteinase-9, J. Am. Chem. Soc. 130 (32) (2008) 10633–10642.
[47] S.C. Davis, F.C. Szoka, Cholesterol phosphate derivatives: synthesis and incorporation
into a phosphatase and calcium-sensitive triggered release liposome, Bioconjug.
Chem. 9 (6) (1998) 783–792.
[48] S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive
nanocarriers for drug and gene delivery, J. Control. Release 126 (3) (2008) 187–204.
[49] M. Caldorera-Moore, N. Guimard, L. Shi, K. Roy, Designer nanoparticles: incorpo-
rating size, shape and triggered release into nanoscale drug carriers, Expert Opin.
Drug Deliv. 7 (4) (2010) 479–495.
[50] Y. Shamay, L. Adar, G. Ashkenasy, A. David, Light induced drug delivery into can-
cer cells, Biomaterials 32 (5) (2011) 1377–1386.
[51] P. Xu, E. Gullotti, L. Tong, C.B. Highley, D.R. Errabelli, T. Hasan, J.-X. Cheng, D.S.
Kohane, Y. Yeo, Intracellular drug delivery by poly(lactic-co-glycolic acid)
nanoparticles, revisited, Mol. Pharm. 6 (1) (2009) 190–201.
[52] K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs,
Nanomedicine-challenge and perspectives, Angew. Chem. Int. Ed. 48 (5)
(2009) 872–897.
[18] V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers, Nat.
Rev. Drug Discovery 4 (2) (2005) 145–160.
[20] T.M. Allen, C. Hansen, F. Martin, C. Redemann, A. Yau-Young, Liposomes containing
synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation
half-lives in vivo, Biochim. Biophys. Acta 1066 (1) (1991) 29–36.
[21] G. Blume, G. Cevc, Liposomes for the sustained drug release in vivo, Biochim. Biophys.
Acta 1029 (1) (1990) 91–97.
[22] A.L. Klibanov, K. Maruyama, V.P. Torchilin, L. Huang, Amphipathic polyethyleneglycols
effectively prolong the circulation time of liposomes, FEBS Lett. 268 (1) (1990)
235–237.
[23] D. Papahadjopoulos, T.M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S.K. Huang,
K.D. Lee, M.C. Woodle, D.D. Lasic, C. Redemann, Sterically stabilized liposomes:
improvements in pharmacokinetics and antitumor therapeutic efficacy, Proc.
Natl. Acad. Sci. U. S. A. 88 (24) (1991) 11460–11464.
[24] J. Senior, C. Delgado, D. Fisher, C. Tilcock, G. Gregoriadis, Influence of surface hy-
drophilicity of liposomes on their interaction with plasma protein and clearance
from the circulation: studies with poly(ethylene glycol)-coated vesicles, Biochim.
Biophys. Acta 1062 (1) (1991) 77–82.
[25] S. Giri, B.G. Trewyn, M.P. Stellmaker, V.S.-Y. Lin, Stimuli-responsive controlled-
release delivery system based on mesoporous silica nanorods capped with mag-
netic nanoparticles, Angew. Chem. Int. Ed. 44 (32) (2005) 5038–5044.
[26] T.D. Nguyen, Y. Liu, S. Saha, K.C.-F. Leung, J.F. Stoddart, J.I. Zink, Design and opti-
mization of molecular nanovalves based on redox-switchable bistable rotaxanes,
J. Am. Chem. Soc. 129 (3) (2007) 626–634.
[53] R. Xiong, Z. Li, L. Mi, P.-N. Wang, J.-Y. Chen, L. Wang, W.-L. Yang, Study on the in-
tracellular fate of Tat peptide-conjugated quantum dots by spectroscopic investi-
gation, J. Fluoresc. 20 (2) (2010) 551–556.
[54] H. Yukawa, Y. Kagami, M. Watanabe, K. Oishi, Y. Miyamoto, Y. Okamoto, M. Tokeshi,
N. Kaji, H. Noguchi, K. Ono, M. Sawada, Y. Baba, N. Hamajima, S. Hayashi, Quantum
dots labeling using octa-arginine peptides for imaging of adipose tissue-derived
stem cells, Biomaterials 31 (14) (2010) 4094–4103.
[55] S.F.M. van Dongen, W.P.R. Verdurmen, R.J.R.W. Peters, R.J.M. Nolte, R. Brock, J.C.M.
van Hest, Cellular integration of an enzyme-loaded polymersome nanoreactor,
Angew. Chem. Int. Ed. 49 (40) (2010) 7213–7216.
[27] S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S.K. Libutti,
K.C.P. Li, B.J. Wood, Pulsed-high intensity focused ultrasound and low temperature-
sensitive liposomes for enhanced targeted drug delivery and antitumor effect, Clin.
Cancer Res. 13 (9) (2007) 2722–2727.
[28] R. Suzuki, Y. Oda, N. Utoguchi, E. Namai, Y. Taira, N. Okada, N. Kadowaki, T.
Kodama, K. Tachibana, K. Maruyama, A novel strategy utilizing ultrasound for an-
tigen delivery in dendritic cell-based cancer immunotherapy, J. Control. Release
133 (3) (2009) 198–205.
[29] S. Mizukami, M. Hosoda, T. Satake, S. Okada, Y. Hori, T. Furuta, K. Kikuchi,
Photocontrolled compound release system using caged antimicrobial peptide,
J. Am. Chem. Soc. 132 (28) (2010) 9524–9525.
[30] A. Koçer, M. Walko, W. Meijberg, B.L. Feringa, A light-actuated nanovalve derived
from a channel protein, Science 309 (5735) (2005) 755–758.
[56] M.M. Fretz, G.A. Koning, E. Mastrobattista, W. Jiskoot, G. Storm, OVCAR-3 cells in-
ternalize TAT-peptide modified liposomes by endocytosis, Biochim. Biophys. Acta
1665 (1–2) (2004) 48–56.
[57] L. Chaloin, P. Bigey, C. Loup, M. Marin, N. Galeotti, M. Piechaczyk, F. Heitz, B.
Meunier, Improvement of porphyrin cellular delivery and activity by conjugation
to a carrier peptide, Bioconjug. Chem. 12 (5) (2001) 691–700.
[58] R. Fischer, M. Fotin-Mleczek, H. Hufnagel, R. Brock, Break on through to the other
side-biophysics and cell biology shed light on cell-penetrating peptides, ChemBioChem
6 (12) (2005) 2126–2142.
[59] K.M. Stewart, K.L. Horton, S.O. Kelley, Cell-penetrating peptides as delivery vehi-
cles for biology and medicine, Org. Biomol. Chem. 6 (13) (2008) 2242–2255.
[60] N. Schmidt, A. Mishra, G.H. Lai, G.C.L. Wong, Arginine-rich cell-penetrating pep-
tides, FEBS Lett. 584 (9) (2010) 1806–1813.
[31] B. Chandra, R. Subramaniam, S. Mallik, D.K. Srivastava, Formulation of
photocleavable liposomes and the mechanism of their content release, Org.
Biomol. Chem. 4 (9) (2006) 1730–1740.
[32] S. Angelos, E. Choi, F. Vögtle, L. De Cola, J.I. Zink, Photo-driven expulsion of molecules
from mesostructured silica nanoparticles, J. Phys. Chem. C 111 (18) (2007) 6589–6592.
[33] Z. Li, Y. Wan, A.G. Kutateladze, Dithiane-based photolabile amphiphiles: toward
photolabile liposomes, Langmuir 19 (16) (2003) 6381–6391.
[34] J.L. Vivero-Escoto, I.I. Slowing, C.-W. Wu, V.S.-Y. Lin, Photoinduced intracellular
controlled release drug delivery in human cells by gold-capped mesoporous silica
nanosphere, J. Am. Chem. Soc. 131 (10) (2009) 3462–3463.
[35] A.A. Kale, V.P. Torchilin, “Smart” drug carriers: PEGylated TATp-modified
pH-sensitive liposomes, J. Liposome Res. 17 (3–4) (2007) 197–203.
[36] A.A. Kale, V.P. Torchilin, Enhanced transfection of tumor cells in vivo using “Smart”
pH-sensitive TAT-modified pegylated liposomes, J. Drug Target. 15 (7–8) (2007)
538–545.
[61] V.P. Torchilin, Tatp-mediated intracellular delivery of pharmaceutical nanocarriers,
Biochem. Soc. Trans. 35 (Pt 4) (2007) 816–820.
[62] D. Sarko, B. Beijer, R.G. Boy, E.M. Nothelfer, K. Leotta, M. Eisenhut, A. Altmann, U.
Haberkorn, W. Mier, The pharmacokinetics of cell-penetrating peptides, Mol.
Pharm. 7 (6) (2010) 2224–2231.
[63] M. Kosuge, T. Takeuchi, I. Nakase, A.T. Jones, S. Futaki, Cellular internalization and
distribution of arginine-rich peptides as a function of extracellular peptide con-
centration, serum, and plasma membrane associated proteoglycans, Bioconjug.
Chem. 19 (3) (2008) 656–664.
[64] G. Breipohl, J. Knolle, W. Stüber, Synthesis and application of acid labile anchor
groups for the synthesis of peptide amides by Fmoc-solid-phase peptide synthe-
sis, Int. J. Pept. Protein Res. 34 (4) (1989) 262–267.
[65] W. Stüber, J. Knolle, G. Breipohl, Synthesis of peptide amides by Fmoc-solid-phase
peptide synthesis and acid labile anchor groups, Int. J. Pept. Protein Res. 34 (3)
(1989) 215–221.
[37] R.M. Sawant, J.P. Hurley, S. Salmaso, A. Kale, E. Tolcheva, T.S. Levchenko, V.P.
Torchilin, “SMART” drug delivery systems: double-targeted pH-responsive pharma-
ceutical nanocarriers, Bioconjug. Chem. 17 (4) (2006) 943–949.
[38] A.A. Kale, V.P. Torchilin, Design, synthesis, and characterization of pH-sensitive
PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect
of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates,
Bioconjug. Chem. 18 (2) (2007) 363–370.
[39] L. Jabr-Milane, L. van Vlerken, H. Devalapally, D. Shenoy, S. Komareddy, M.
Bhavsar, M. Amiji, Multi-functional nanocarriers for targeted delivery of drugs
and genes, J. Control. Release 130 (2) (2008) 121–128.
[40] D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery, Adv.
Drug Delivery Rev. 58 (15) (2006) 1655–1670.
[41] G.A. Koning, A.M.M. Eggermont, L.H. Lindner, T.L.M. ten Hagen, Hyperthermia and
thermosensitive liposomes for improved delivery of chemotherapeutic drugs to
solid tumors, Pharm. Res. 27 (8) (2010) 1750–1754.
[42] B. Smith, I. Lyakhov, K. Loomis, D. Needle, U. Baxa, A. Yavlovich, J. Capala, R.
Blumenthal, A. Puri, Hyperthermia-triggered intracellular delivery of anticancer
agent to HER2(+) cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated
thermosensitive liposomes (HER2(+) affisomes), J. Control. Release 153 (2)
(2011) 187–194.
[66] G.B. Fields, R.L. Noble, Solid phase peptide synthesis utilizing 9-
fluorenylmethoxycarbonyl amino acids, Int. J. Pept. Protein Res. 35 (1990) 161–214.
[67] E. Kaiser, R.L. Colescott, C.D. Bossinger, P.I. Cook, Color test for detection of free
terminal amino groups in the solid-phase synthesis of peptides, Anal. Biochem.
34 (1970) 595–598.
[68] F. Szoka, D. Papahadjopoulos, Procedure for preparation of liposomes with large
internal aqueous space and high capture by reverse-phase evaporation, Proc.
Natl. Acad. Sci. U. S. A. 75 (9) (1978) 4194–4198.
[69] G. Rouser, S. Fkeischer, A. Yamamoto, Two dimensional then layer chromato-
graphic separation of polar lipids and determination of phospholipids by phos-
phorus analysis of spots, Lipids 5 (5) (1970) 494–496.
[70] A.D. Frankel, C.O. Pabo, Cellular uptake of the tat protein from human immunode-
ficiency virus, Cell 55 (6) (1988) 1189–1193.
[71] M. Green, P.M. Loewenstein, Autonomous functional domains of chemically syn-
thesized human immunodeficiency virus tat trans-activator protein, Cell 55 (6)
(1988) 1179–1188.
[72] E. Mastrobattista, G.A. Koning, L. van Bloois, A.C.S. Filipe, W. Jiskoot, G. Storm,
Functional characterization of an endosome-disruptive peptide and its applica-
tion in cytosolic delivery of immunoliposome-entrapped proteins, J. Biol. Chem.
277 (30) (2002) 27135–27143.
[43] M.B. Yatvin, J.N. Weinstein, W.H. Dennis, R. Blumenthal, Design of liposomes for en-
hanced local release of drugs by hyperthermia, Science 202 (4374) (1978) 1290–1293.
[44] M.N. Antipina, G.B. Sukhorukov, Remote control over guidance and release prop-
erties of composite polyelectrolyte based capsules, Adv. Drug Delivery Rev. 63 (9)
(2011) 716–729.
[73] H.B. Lee, M.C. Zaccaro, M. Pattarawarapan, S. Roy, H.U. Saragovi, K. Burgess, Syn-
theses and activities of new C10 beta-turn peptidomimetics, J. Org. Chem. 69 (3)
(2004) 701–713.
[74] A.A. Spector, K. John, J.E. Fletcher, Binding of long-chain fatty acids to bovine
serum albumin, J. Lipid Res. 10 (1) (1969) 56.