has recently been approved by FDA as anti-cancer drug
(Ixabepilone).10
In addition, SAR studies have suggested that the C1-C8
sector is critical for maintenance of biological activity and
is not amenable to significant change.7 However, certain
modifications within C1-C8 have yielded potent ana-
logues.12 An important data point is available from the work
of Martin et al. who introduced a six-membered ring between
C4-C6 from the pro-R methyl at C4 in the corresponding
EpoB analogue.13 The compound proved to be inactive
against the MCF-7 tumor cell line. The electron crystal-
lographic structure9 suggests a pro-S attachment to be the
compatible link. Stereochemical inversion might then be
responsible for the lack of activity. In this context, EpoA
analogue 3 was conceived as a potential diagnostic test of
the electron crystallographic epothilone binding model.
The retrosynthesis of compound 3 is summarized in
Scheme 1. The approach adopts a Suzuki-Miyaura coupling
Recently, our group proposed a unique EpoA conformation
and microtubule binding model based on electron crystal-
lography (EC), NMR conformer deconvolution, and SAR
analysis.9 A peculiar feature of the proposed binding
conformer is the presence of a syn-pentane interaction
between methyl groups at C6 and C8 that can be locked in
place by incorporating the corresponding carbons in a six-
membered ring (3, Figure 1). Optimization of 3 in the
proposed binding form with OPLS200111 indicated it to be
a stable local minimum (Figure 2). Furthermore, docking
Scheme 1. Retrosynthesis of 3
Figure 2. Docking poses of 1 (yellow) and 3 (cyan) in the EC-
determined tubulin binding site. The shortest epo-tubulin H-H
contact for 3 is 2.3 Å; the sum of the van der Waals radii.
the structure into â-tubulin suggested that the additional CH2
in the newly installed cyclohexane ring would not experience
steric congestion with the protein (Figure 2).
(5) For recent general reviews, see: (a) Altmann, K. H.; Florsheimer,
A.; Bold, G.; Caravatti, G.; Wartmann, M. Chimia 2004, 58, 686. (b)
Altmann, K. H. Cur. Pharm. Des. 2005, 11, 1595. (c) Altmann, K. H.;
Pfeiffer, B.; Arseniyadis, S.; Pratt, B. A.; Nicolaou, K. C. Chemmedchem
2007, 2, 396. (d) Feyen, F.; Cachoux, F.; Gertsch, J.; Wartmann, M.;
Altmann, K. Acc. Chem. Res. 2008, 41, 21.
(6) For recent reviews on the synthesis of epothilones and analogs, see:
(a) Rivkin, A.; Cho, Y. S.; Gabarda, A. E.; Yoshimura, F.; Danishefsky, S.
J. J. Nat. Prod. 2004, 67, 139. (b) Luduvico, I.; Le Hyaric, M.; De Almeida,
M. V.; Da, Silva, A. D. Mini-ReV. Org. Chem. 2006, 3, 49. (c) Watkins, E.
B.; Chittiboyina, A. G.; Avery, M. A. Eur. J. Org. Chem. 2006, 4071.
(7) (a) Nicolaou, K. C.; Vourloumis, D.; Li, T. H.; Pastor, J.; Winssinger,
N.; He, Y.; Ninkovic, S.; Sarabia, F.; Vallberg, H.; Roschangar, F.; King,
N. P.; Finlay, M. R. V.; Giannakakou, P.; VerdierPinard, P.; Hamel, E.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2097. (b) Su, D. S.; Balog, A.;
Meng, D. F.; Bertinato, P.; Danishefsky, S. J.; Zheng, Y. H.; Chou, T. C.;
He, L. F.; Horwitz, S. B. Angew. Chem., Int. Ed. Engl. 1997, 36, 2093. (c)
For reviews, see: ref 5c.
strategy initially developed by Danishefsky for the synthesis
of epothilones A and B.14 The advanced intermediate 6, in
which the cyclohexane core structure has been constructed,
was conceived to derive from 7 utilizing sequential substrate
directed epoxidation and epoxide opening.15 Homoallylic
alcohol 7 is accessible from aldehyde 8 by Brown’s method
for preparing 1-(2-cyclohexenyl)-1-alkanols.16
(12) Regueiro-Ren, A.; Leavitt, K.; Kim, S. H.; Hofle, G.; Kiffe, M.;
Gougoutas, J. Z.; DiMarco, J. D.; Lee, F. Y. F.; Fairchild, C. R.; Long, B.
H.; Vite, G. D. Org. Lett. 2002, 4, 3815.
(8) (a) Carlomagno, T.; Blommers, M. J. J.; Meiler, J.; Jahnke, W.;
Schupp, T.; Petersen, F.; Schinzer, D.; Altmann, K. H.; Griesinger, C.
Angew. Chem., Int. Ed. 2003, 42, 2511. (b) Taylor, R. E.; Chen, Y.; Beatty,
A.; Myles, D. C.; Zhou, Y. Q. J. Am. Chem. Soc. 2003, 125, 26. (c) Heinz,
D. W.; Schubert, W. D.; Hofle, G. Angew. Chem., Int. Ed. 2005, 44, 1298.
(d) For reviews, see: ref 5c.
(9) Nettles, J. H.; Li, H. L.; Cornett, B.; Krahn, J. M.; Snyder, J. P.;
Downing, K. H. Science 2004, 305, 866.
(10) (a) Klar, U.; Buchmann, B.; Schwede, W.; Skuballa, W.; Hoffinann,
J.; Lichtner, R. B. Angew. Chem., Int. Ed. 2006, 45, 7942. (b) Conlin, A.;
Fornier, M.; Hudis, C.; Kar, S.; Kirkpatrick, P. Nat. ReV. Drug DiscoVery
2007, 6, 953.
(13) Martin, H. J.; Pojarliev, P.; Kahlig, H.; Mulzer, J. Chem. Eur. J.
2001, 7, 2261.
(14) (a) Meng, D. F.; Bertinato, P.; Balog, A.; Su, D. S.; Kamenecka,
T.; Sorensen, E. J.; Danishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10073.
(b) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem., Int. Ed.
2001, 40, 4544.
(15) (a) For a review of substrate directed reactions, see: Hoveyda, A.
H.; Evans, D. A.; Fu, G. C. Chem. ReV. 1993, 93, 1307. For substituent
directed epoxide opening, see: (b) Flippin, L. A.; Brown, P. A.; Jalaliaraghi,
K. J. Org. Chem. 1989, 54, 3588. (c) Chini, M.; Crotti, P.; Flippin, L. A.;
Gardelli, C.; Macchia, F. J. Org. Chem. 1992, 57, 1713.
(16) (a) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc.
1985, 107, 2564. (b) Brown, H. C.; Bhat, K. S.; Jadhav, P. K. J. Chem.
Soc., Perkin Trans. 1 1991, 2633.
(11) MacroModel 9.0 (Maestro 7.0 interface), supplied by Schro¨dinger,
1566
Org. Lett., Vol. 10, No. 8, 2008