molecular sensors and devices.4-7 Therefore, considerable
attention has been paid to develop efficient methods for the
synthesis of pyrroles.8
Three-Component Reaction of Aldose Sugars,
Aryl Amines, and 1,3-Diones: A Novel Synthesis
of Annulated Pyrroles
Naturally occurring carbohydrates and their derivatives have
been useful during the last few decades as “chiral pool”
constituents in the enantioselective synthesis of biologically
active natural and non-natural products.9 The ready availability
of a wide range of carbohydrates in nature and their multichiral
architecture, coupled with their well-defined stereochemistry,
make them attractive starting materials in organic synthesis.10
To the best of our knowledge, there have been no reports in
the literature on the formation of annulated pyrroles via
condensation of aldose sugars with enamines. In this paper, we
disclose a direct and one-pot synthesis of optically pure
annulated pyrroles via a novel cyclization of enamines with
aldose sugars. While working on the Knoevenagel condensation
of D-glucose with â-enaminoketones in the presence of InCl3,
surprisingly, we have observed the formation of annulated
pyrroles. This provided the incentive for an extensive study.
Initially, we have examined the reaction of D-glucose with
aniline and acetyl acetone in the presence of 10 mol % of
InCl3. The reaction proceeded well in water at 80 °C and
after acetylation; the product 4a was isolated in 93% yield
(Scheme 1).
Jhillu S. Yadav,*,† Basi V. Subba Reddy,† Mende Srinivas,†
Chitteti Divyavani,† Shaik Jeelani Basha,‡ and
Akella V. S. Sarma‡
DiVision of Organic Chemistry and Centre for Nuclear
Magnetic Resonance, Indian Institute of Chemical Technology,
Hyderabad 500007, India.
yadaV@iict.res.in
ReceiVed September 13, 2007
To establish the structure, the product (dihydroxyl derivative)
thus obtained was converted as its nitrobenzoate 5a and then
submitted for extensive NMR studies. In 5a, the presence of
Aldose sugars undergo smooth coupling with enamines,
generated in situ from aryl amines and 1,3-diketones, in the
presence of 10 mol % of InCl3 in water at 80 °C to furnish
annulated pyrrole derivatives in relatively good to high yields.
The use of InCl3, in combination with water, makes this
procedure quite simple, more convenient, and environmen-
tally friendly.
(3) (a) Thompson, R. B. FASEB J. 2001, 15, 1671-1676. (b) Muchowski,
J. M. AdV. Med. Chem. 1992, 1, 109-135. (c) Cozzi, P.; Mongelli, N. Curr.
Pharm. Des. 1998, 4, 181-201. (d) Furstner, A.; Szillat, H.; Gabor, B.;
Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305-8314.
(4) (a) Baumgarlen, M.; Tyulyulkor, N. Chem. Eur. J. 1998, 4, 987-
989. (b) Lee, C.-F.; Yang, L.-M.; Hwu, T.-Y.; Feng, A.-S.; Tseng, J.-C.;
Luh, T.-Y. J. Am. Chem. Soc. 2000, 122, 4992-4993 and references cited
therein. (c) Groenendaal, L.; Meijere, E. W.; Vekemans, J. A. J. M. In
Electronic Materials: The Oligomer Approac; Mu¨llen, K., Wegner, G., Eds.;
Wiley-VCH: Weinheim, Germany, 1997. (d) Domingo, V. M.; Aleman,
C.; Brillas, F.; Julia, L. J. Org. Chem. 2001, 66, 4058-4061.
(5) (a) Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R., Eds.
Handbook of Conducting Polymers, 2nd ed.; Marcell Dekker: New York,
1998. (b) Higgins, S. Chem. Soc. ReV. 1997, 26, 247-258.
(6) (a) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem.,
Int. Ed. 2001, 40, 2382-2426. (b) Lehn, J. M. Supramolecular Chemistry;
Concepts and PerceptiVes; VCH: Weinheim, Germany, 1995.
(7) (a) Gale, P. A.; Anzenbacher, P.; Sessler, J. L. Coord. Chem. ReV.
2001, 222, 57-102. (b) Vicente, M. G. H.; Jaquinod, L.; Smith, K. M.
Chem. Commun. 1999, 1771-1782. (c) Yoon, D. W.; Hwang, H.; Lee,
C.-H. Angew. Chem., Int. Ed. 2002, 41, 1757-1759. (d) Jeppesen, J. O.;
Becher, J. Eur. J. Org. Chem. 2003, 3245-3266. (e) Miyaji, H.; Sato, W.;
Sessler, J. L. Angew. Chem., Int. Ed. 2000, 39, 1777-1780. (f) Montforts,
F. P.; Kutzki, O. Angew. Chem., Int. Ed. 2000, 39, 599-601.
(8) (a) Ferreira, V. F.; Desouza, M. C. B. V.; Cunha, A. C.; Pereira, L.
O. R.; Ferreira, M. L. G. Org. Prep. Proced. Int. 2001, 33, 411-454. (b)
Zeng, D. X.; Chen, Y. Synlett 2006, 490-492 and references cited therein.
(c) Tracey, M. R.; Husung, R. P.; Lambeth, R. H. Synthesis 2004, 918-
922 and references cited therein. (d) Song, Ch.; Knight, D. W.; Whatton,
M. A. Org. Lett. 2006, 8, 163.
Substituted pyrroles represent an important class of hetero-
cycles which are present in a wide range of natural products
such as porphyrins and bioactive molecules including the
blockbuster drug atorvastatin calcium as well as important
antiinflammatants, antitumor agents, and immunosuppressants.1-3
Similarly, polypyrroles are of growing relevance in material
science, nonlinear optics, and supramolecular chemistry as
* Address correspondence to this author. Fax: 91-40-27160512.
† Division of Organic Chemistry.
‡ Centre for Nuclear Magnetic Resonance.
(1) Reviews: (a) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1999,
2849-2866. (b) Jones, R. A., Ed. Pyrroles Chemistry of Heterocyclic
Compounds; Wiley: New York, 1990; Vol. 48. (c) Boger, D. L.; Boyce,
C. W.; Labroli, M. A.; Sehon, C. A. J. Am. Chem. Soc. 1999, 121, 54-62.
(d) ComprehensiVe Heterocyclic Chemistry; Bird, C. W., Ed.; Pergamon
Press: Oxford, UK, 1996; Vol. 2. (e) O’Hagan, D. Nat. Prod. Rep. 2000,
17, 435-446 and references cited therein. (f) Larionov, O. V.; Meijere A.
D. Angew. Chem., Int. Ed. 2005, 44, 5664-5667 and references cited therein.
(2) (a) Gabriele, B.; Salerno, G.; Fazio, A. J. Org. Chem. 2003, 68, 7853-
7861 and references cited therein. (b) Furstner, A. Angew. Chem., Int. Ed.
2003, 42, 3582-3603. (c) Jacobi, P. A.; Coults, L. D.; Guo, J. S.; Leung,
S. I. J. Org. Chem. 2000, 65, 205-213. (d) Fumoto, Y.; Eguchi, T.; Uno,
H.; Ono, N. J. Org. Chem. 1999, 64, 6518-6521. (e) Dannhardt, G.; Kiefer,
W.; Kra¨emer, G.; Maehrlein, S.; Nowe, U.; Fiebich, B. Eur. J. Med. Chem.
2000, 35, 499-510. (f) Ragno, R.; Marshall, G. R.; Santo, R. D.; Costi,
R.; Massa, S.; Rompei, R.; Artico, M. Bioorg. Med. Chem. 2000, 8, 1423-
1432.
(9) (a) Nicolaou, K. C.; Mitchell, H. J. Angew. Chem., Int. Ed. 2001,
40, 1576-1624. (b) Danishefsky, S. J.; Allen, J. R. Angew. Chem., Int. Ed.
2000, 39, 836-863.
(10) Hanessain, S. Total Synthesis of Natural Products: The “Chiron”
Approach; Organic Chemistry series; Pergamon: Oxford, UK, 1983; Vol.
3. Fraser-Reid, B.; Anderson, R. C. Fortschr. Chem. Org. Naturst. 1980,
39, 1.
10.1021/jo702012w CCC: $40.75 © 2008 American Chemical Society
Published on Web 03/21/2008
3252
J. Org. Chem. 2008, 73, 3252-3254