Mendeleev Commun., 2010, 20, 257–259
References
O2N
HN
1
G. A. Olah and G. K. S. Prakash, Electrophile Reactions of Alkanes. The
Chemistry of Alkanes and Cycloalkanes, eds. S. Patai and Z. Rappoport,
Wiley-Interscience, Chichester–New York, 1992, ch. 13.
O
2
(a) C. L. Hill, Activation and Functionalization of Alkanes, Wiley-
Interscience, New York, 1989; (b) New J. Chem. (Special Issue on Alkane
Activation and Functionalization), 1989, 13, 645; (c) J. Organomet.
Chem. (Special Issue on Aspects of C–H Activation), 1995, 504, 1 and
references cited therein; (d) A. E. Shilov and G. B. Shul’pin, Chem.
Rev., 1997, 97, 2879 and references cited therein.
Yield (%)
(1 h at 0 °C)
Acylation
R
CO
CO
CO
27
3
4
(a) R. G. Bergman, Nature, 2007, 446, 391; (b) J. A. Labinder and
J. E. Bercaw, Nature, 2002, 417, 50.
CO
93
CO
76
(a) I. S. Akhrem, A. V. Orlinkov, E. I. Mysov and M. E. Vol’pin,
Tetrahedron Lett., 1981, 22, 3891; (b) I. S. Akhrem, A. V. Orlinkov
and M. E. Vol’pin, Usp. Khim., 1996, 65, 920 (Russ. Chem. Rev., 1996,
65, 849); (c) I. S. Akhrem and A. V. Orlinkov, Izv. Akad. Nauk, Ser. Khim.,
1998, 771 (Russ. Chem. Bull., 1998, 47, 740); (d) I. S. Akhrem, Izv.
Akad. Nauk, Ser. Khim., 2003, 2466 (Russ. Chem. Bull., Int. Ed., 2003,
52, 2606); (e) I. S. Akhrem and A. V. Orlinkov, Chem. Rev., 2007, 107,
2037 and references cited therein.
75
30
Increase of the acylium ion stability
O2N
HN
5
6
(a) J.-P. Mahy, G. Bedi, P. Battioni and D. Mansuy, New J. Chem.,
1989, 13, 651; (b) B. Pilar Gomez-Emeterio, J. Urbano, M. Mar Diaz-
Requejo and P. J. Perez, Organometallics, 2008, 27, 4126 and references
cited therein.
(a) P. Kovacic and Ph. D. Roskos, Tetrahedron Lett., 1968, 56, 5833;
(b) P. Kovacic and Ph. D. Roskos, J. Am. Chem. Soc., 1969, 91, 6457;
(c) S. B. Volkova, O. V. Platonova, V. G. Tsypin and V. A. Polukeev,
Zh. Obshch. Khim., 2008, 78, 1487 (Russ. J. Gen. Chem., 2008, 78,
1719).
(a) W. Haaf, Angew. Chem., 1961, 73, 144; (b) M. Ohsigi, Y. Inamoto,
N. Takaishi, Y. Fujikura and K. Aigami, Synthesis, 1977, 9, 632;
(c) G. A. Olah and B. G. Gupta, J. Org. Chem., 1980, 45, 3532.
I. S. Akhrem, D. V. Avetisyan, L. V. Afanas’eva, S. V. Vitt, P. V. Petrovskii
and A. V. Orlinkov, Tetrahedron Lett., 2008, 41, 1399.
(a) A. M. Tafesh and J. Weiguny, Chem. Rev., 1996, 96, 2035; (b) R. S.
Downing, P. J. Kunkeler and H. van Bekkum, Catal. Today, 1997, 37,
121; (c) N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH,
New York, 2001; (d) J. P. Adams, J. Chem. Soc., Perkin Trans. 1, 2002,
2586.
Alkylation
R
Yield (%)
(1 h at 0 °C)
0
47
67
75
16218
72 (CO)
15616
18816
176.617 No data
18216
ΔHexp
/
7
kcal mol–1
Increase of the carbocation stability
8
9
Scheme 4
that this nominally secondary ion, but in fact non-classical
cation19 is unusually stable (11.4 kcal mol–1 more stable than
the cyclopentyl cation). Adamantane producing the second on
stability carbocation after n-pentane showed the record-breaking
activity in alkylation; n-pentane generating a thermodynamically
stable but kinetically labile cation formed N-alkylation product
in a high yield in the presence of CO only. However, surprisingly,
the difference between the enthalpies of cyclopentyl and nor-
bornyl cations is relatively small while the yields of the alkyla-
tion reactions changed dramatically.
Thus, the first selective one-pot N-alkylations and N-acyla-
tions of a weak nucleophilic substrate, o-nitroaniline, with saturated
hydrocarbons were performed, and a correlation between the
activities of RH in both of the reactions and the stabilities of
corresponding RCO+ and R+ cations was demonstrated. The
alkylation with n-pentane was effective if the acylium cation
rather than alkane served as the precursor of the tert-amyl
cation.
10 (a) M. E. Tranquillini and G. Finizia, PCT In. Appl. WO 9425445 (Chem.
Abstr., 1995, 122, 133229); (b) A. Tomaru, T. Kaino, T. Harihara and
S. Matsumoto, Japanese Patent 89-124834, 1989 (Chem. Abstr., 1990,
112, 45281); (c) Y. Takeya, Japanese Patent 93-61082, 1993 (Chem.
Abstr., 1993, 119, 149204); (d) J. F. Nicoud, Mol. Cryst. Liq. Cryst.,
1988, 156, 257.
11 J. F. Hartwig, S. Shashank, Q. Shen and F. Barrios-Landeros, in Patai’s
Chemistry of Functional Groups. Anilines, ed. Z. Rappoport, Wiley,
2009.
12 I. S. Akhrem, D. V. Avetisyan, S. V. Vitt and P. V. Petrovskii, Mendeleev
Commun., 2005, 185.
13 J. M. Bakke and B. Knudsen, Acta Chem. Scand., 1994, 48, 234.
14 D. M. Brouwer and H. Hogeveen, Prog. Phys. Org. Chem., 1972, 9, 179.
15 A. V. Orlinkov, I. S. Akhrem and M. E. Vol’pin, Usp. Khim., 1991, 60,
1049 (Russ. Chem. Rev., 1991, 60, 524).
16 P. Stewart, J. Comput. Chem., 1989, 10, 209 and references cited therein.
17 P. P. S. Saluja and P. Kebarle, J. Am. Chem. Soc., 1979, 101, 1084.
18 J.-L. M. Abboud, O. Castano, J. Z. Davalos and R. Gomperts, Chem.
Phys. Lett., 2001, 337, 327.
19 (a) G. A. Olah, G. K. S. Prakash and M. Saunders, Acc. Chem. Res.,
1983, 15, 440; (b) P. R. Schreiner, D. L. Severance, W. L. Jorgensen,
P. v. R. Schleyer and H. F. Schaefer III, J. Am. Chem. Soc., 1995, 117,
2663.
This work was supported by the Russian Foundation for Basic
Research (project no. 09-03-00194) and the RAS Presidium
Fund (Programme 18P).
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2010.09.005.
Received: 8th February 2010; Com. 10/3463
– 259 –