absorption data, the fluid emission of Pt-4 displays less prominent
solvatochromic effects (e.g. kmax 651 nm in THF is red-shifted by ca.
190 cm−1 to 659 nm in toluene).‡ Emission lifetimes in the 1–2 ls
regime and luminescent quantum yields of up to 2.6 × 10−2 for Pt-4
in toluene are recorded. The 77 K glassy emission of Pt-2 and Pt-4
in 2-Me-THF are partially blue-shifted and highly structured;‡
for example, Pt-4 exhibits peak maxima at 646 and 714 nm
(vibronic progression = 1470 cm−1). As expected, all excitation
spectra (monitored at the emission energy) are comparable in
shape to the corresponding UV-vis absorption spectra. Upon
consideration of the large Stokes shifts, negative solvatochromism
and previous assignments,5,12,13 plus the vibronic progressions of
ca. 1400–1500 cm−1 in the 77 K solid-state and glassy emission
spectra, we assign the excited states of Pt-2 and Pt-4 to mixed
3MLCT and 3[l → p*(imine)] (l = lone pair/phenoxide) parentage.
The transient absorption–difference (TA) spectrum‡ for the
excited state of Pt-4 (900 ns delay) in CH2Cl2 at 298 K is
characterized by bleaching in the pp* region (k < 470 nm), an
excited-state absorption band at ca. kmax 505 nm, and additional
absorptions extending and rising in the visible region (k >
600 nm) towards the near-IR. While the latter far-red absorptions
are not detected in the TA spectra of previously reported Pt–
Schiff base analogues5a,b and are reminiscent of the OPE pp*
state,9b,c,14 we suggest further investigations to resolve the detailed
contribution and impact of the OPE units upon the excited state.
The decay lifetime (sTA ) of 1.4 ls approaches the emission lifetime
(1.3 ls), indicating that the observed excited-state absorption can
be ascribed to the excited state of Pt-4.
Significantly, with regards to sensing applications, the phos-
phorescent characteristics of the oligomeric Pt-2 and Pt-4
derivatives (prominent MLCT component in the excited state;
higher quantum yields; low-energy red emission where the hu-
man eye is more perceptive) are promising and nevertheless
appealing compared with the previously reported Zn/Ni/V-based
poly(salphenylene–ethynylene)s8 (weakly or non-emissive) and Pt–
oligo/poly(phenylene)s4 (dominated by 3LC/pp* excited state). It
is anticipated that the prominent spin–orbit coupling and MLCT
character evident in the excited states of Pt-2 and Pt-4 can be
exploited in due course. Needless to say, we have attempted the
Pd-catalysed polymerisation of the diiodo complex 1 with 2,5-
diheptyloxy-1,4-diethynylbenzene, but the resultant deep red solid
proved intractable and insoluble in organic solvents. Longer alkyl
chains are apparently required, and studies dedicated to the fabri-
cation of phosphorescent conjugated polymers featuring Pt–salen
moieties are in progress. In conclusion, monodispersed phenylene–
ethynylene oligomers linked by a phosphorescent Pt(II) Schiff
base unit have been designed and synthesised, and interesting
emissive properties have been observed. Based on this work, we
envisage that new classes of Pt(II)–Schiff base conjugated materials
can be developed for luminescent sensing applications.
Acknowledgements
We acknowledge financial support from City University of Hong
Kong (SRG 7001787) and Research Grants Council of the Hong
Kong SAR, China (CityU 100405).
Notes and references
1 (a) Q. Zhou and T. M. Swager, J. Am. Chem. Soc., 1995, 117, 12593;
(b) U. H. F. Bunz, Chem. Rev., 2000, 100, 1605.
2 (a) A. J. Sandee, C. K. Williams, N. R. Evans, J. E. Davies, C. E.
Boothby, A. Ko¨hler, R. H. Friend and A. B. Holmes, J. Am. Chem.
Soc., 2004, 126, 7041; (b) non-conjugated Pt luminophore: P. T. Furuta,
L. Deng, S. Garon, M. E. Thompson and J. M. J. Fre´chet, J. Am. Chem.
Soc., 2004, 126, 15388.
3 K. Haskins-Glusac, M. R. Pinto, C. Tan and K. S. Schanze, J. Am.
Chem. Soc., 2004, 126, 14964.
4 S. W. Thomas, III, S. Yagi and T. M. Swager, J. Mater. Chem., 2005,
15, 2829.
5 (a) C. M. Che, S. C. Chan, H. F. Xiang, M. C. W. Chan, Y. Liu and Y.
Wang, Chem. Commun., 2004, 1484; (b) Y. Y. Lin, S. C. Chan, M. C. W.
Chan, Y. J. Hou, N. Zhu, C. M. Che, Y. Liu and Y. Wang, Chem.–Eur. J.,
2003, 9, 1263; (c) J. Kavitha, S. Y. Chang, Y. Chi, J. K. Yu, Y. H. Hu,
P. T. Chou, S. M. Peng, G. H. Lee, Y. T. Tao, C. H. Chien and A. J.
Carty, Adv. Funct. Mater., 2005, 15, 223.
6 (a) Example: K. H. Wong, M. C. W. Chan and C. M. Che, Chem.–
Eur. J., 1999, 5, 2845; (b) J. A. G. Williams, Top. Curr. Chem., 2007,
281, 205.
7 (a) UO22+ core: D. M. Rudkevich, W. Verboom, Z. Brzozka, M. J. Palys,
W. P. R. V. Stauthamer, G. J. van Hummel, S. M. Franken, S. Harkema,
J. F. J. Engbersen and D. N. Reinhoudt, J. Am. Chem. Soc., 1994, 116,
4341; (b) Ni- and Cu(II): J. L. Reddinger and J. R. Reynolds, Chem.
Mater., 1998, 10, 3; (c) Co(II): T. Mizuno, M. Takeuchi and S. Shinkai,
Tetrahedron, 1999, 55, 9455.
8 Weakly/non-fluorescent Zn– and Ni–Schiff base PPEs: (a) A. C. W.
Leung, J. H. Chong, B. O. Patrick and M. J. MacLachlan, Macro-
molecules, 2003, 36, 5051; (b) O. Lavastre, I. Illitchev, G. Jegou and
P. H. Dixneuf, J. Am. Chem. Soc., 2002, 124, 5278.
9 (a) K. A. Walters, D. M. Dattelbaum, K. D. Ley, J. R. Schoonover, T. J.
Meyer and K. S. Schanze, Chem. Commun., 2001, 1834; (b) K. D.
Glusac, S. Jiang and K. S. Schanze, Chem. Commun., 2002, 2504;
(c) S. Liu and K. S. Schanze, Chem. Commun., 2004, 1510; (d) A.
Harriman, G. Izzet, S. Goeb, A. De Nicola and R. Ziessel, Inorg. Chem.,
2006, 45, 9729; (e) A. Belbakra, S. Goeb, A. De Nicola, R. Ziessel,
C. Sabatini, A. Barbieri and F. Barigelletti, Inorg. Chem., 2007, 46,
839.
10 Higher reaction temperatures was observed to accelerate ligand de-
composition; the dibromo analogue was also prepared but proved
ineffective in subsequent coupling reactions.
13
=
11 Selected C NMR data for Pt-2 (126 MHz, CDCl3): 188.9 (C O),
=
97.2, 84.9 (2 × C≡C); for Pt-4 (CDCl3): 189.2 (C O), 94.8, 94.1, 90.8,
84.8 (4 × C≡C). Selected IR data for Pt-2 (thin film): v = 2203 (C≡C),
1666 (C O), 1594 (C N) cm−1; for Pt-4 (thin film): v = 2200 (C≡C),
=
=
−1
=
=
1679 (C O), 1595 (C N) cm
.
12 S. D. Cummings and R. Eisenberg, J. Am. Chem. Soc., 1996, 118,
1949.
13 (a) R. Ballardini, G. Varani, M. T. Indelli and F. Scandola, Inorg. Chem.,
1986, 25, 3858; (b) D. Donges, J. K. Nagle and H. Yersin, Inorg. Chem.,
1997, 36, 3040.
14 J. A. Simon, S. L. Curry, R. H. Schmehl, T. R. Schatz, P.
Piotrowiak, X. Jin and R. P. Thummel, J. Am. Chem. Soc., 1997, 119,
11012.
1414 | Dalton Trans., 2008, 1412–1414
This journal is
The Royal Society of Chemistry 2008
©