2250
J. Dauvergne et al. / Tetrahedron Letters 49 (2008) 2247–2250
´
´
4. Lebeau, L.; Schultz, P.; Celia, H.; Mesini, P.; Nuss, S.; Klinger, C.;
Olland, S.; Oudet, P.; Mioskowski, C. In Handbook of Non-medical
Applications of Liposomes, Barenholz, Y.; Lasic, D. D. E. Eds.; 1996;
pp 153–186.
45
40
35
30
25
20
15
10
5
Π (mN.m-1)
5. Uzgiris, E. E.; Kornberg, R. D. Nature 1983, 301, 125–129.
6. Courty, S.; Lebeau, L.; Martel, L.; Lenne, P. F.; Balavoine, F.;
Dischert, W.; Konovalov, O.; Mioskowski, C.; Legrand, J. F.;
Venien-Bryan, C. Langmuir 2002, 18, 9502–9512.
7. Darst, S. A.; Ahlers, M.; Meller, P. H.; Kubalek, E. W.; Blankenburg,
R.; Ribi, H. O.; Ringsdorf, H.; Kornberg, R. D. Biophys. J. 1991, 59,
387–396.
8. Ellis, M. J.; Hebert, H. Micron 2001, 32, 541–550.
9. Mosser, G.; Brisson, A. J. Struct. Biol. 1991, 106, 191–198.
10. Nuss, S.; Mioskowski, C.; Lebeau, L. Chem. Phys. Lipids 1999, 103,
21–35.
11. Lebeau, L.; Lach, F.; Venien-Bryan, C.; Renault, A.; Dietrich, J.;
Jahn, T.; Palmgren, M. G.; Kuhlbrandt, W.; Mioskowski, C. J. Mol.
Biol. 2001, 308, 639–647.
0
0
50
100
150
200
Area per molecule (Å2)
Fig. 2. Surface pressure (p)–area isotherm of PhenylHFNTANi mono-
layer spread on buffer subphase at 20 °C.
20 °C. Both conditions are key features in the 2D crystalli-
zation of membrane proteins on a lipid monolayer experi-
ments. The membrane proteins are usually solubilized in
detergent. The monolayer matrix made from these two
compounds is not perturbed by the presence of detergent
in the subphase and therefore provide a suitable anchor
for the solubilized membrane proteins. Then there is a
direct correlation between the fluidity of the monolayer
and the crystallization process. Once the proteins are
adsorbed and concentrated at the lipid or surfactant mono-
layer, the organization of proteins within a 2D crystal
results from the in-plane diffusion of the protein–surfactant
complexes both in rotation and in translation. This diffu-
sion process is partly controlled by the fluidity property
of the Langmuir film. We have shown that C6F13SO-
THAM and PhenylHFNTANi films are fluid at 20 °C.
We think that these two newly designed components are
good candidates for the crystallization of membrane
proteins
12. Held, P.; Lach, F.; Lebeau, L.; Mioskowski, C. Tetrahedron Lett.
1997, 38, 1937–1940.
13. Mukerjee, P. Colloids Surf., A 1994, 84, 1–10.
14. Mukerjee, P.; Yang, A. Y. S. J. Phys. Chem. 1976, 80, 1388m–
1390m.
15. Lebaupain, F.; Salvay, A. G.; Olivier, B.; Durand, G.; Fabiano, A.-S.;
Michel, N.; Popot, J-. L.; Ebel, C.; Breyton, C.; Pucci, B. Langmuir
2006, 22, 8881–8890.
16. Polidori, A.; Presset, M.; Lebaupain, F.; Ameduri, B.; Popot, J-. L.;
Breyton, C.; Pucci, B. Bioorg. Med. Chem. Lett. 2006, 16, 5827–5831.
17. Petkova, V.; Benattar, J.-J.; Zoonens, M.; Zito, F.; Popot, J.-L.;
Polidori, A.; Jasseron, S.; Pucci, B. Langmuir 2007, 23, 4303–
4309.
18. Huang, W. Y. J. Fluorine Chem. 1992, 58, 1–8.
19. Selected spectra for PhenylHFNTA: 1H NMR (DMSO-d6) 7.28 (m,
5H, phenyl); 3.50 (m, 4H, NCH2COOH); 3.36 (t, 1H, CHLys); 3.08 (t,
2H, CH2NH); 2.96 (t, 2H, CH2NH); 2.71 (t, 2H, CH2Ph); 2.22 (m,
4H, CH2CF2); 1.85 (m, 2H, CH2bPh); 1.61 (m, 4H, CH2bNHCONH);
1.35 (m, 4H, CH2 Lys). 19F NMR (DMSO-d6) ꢁ113.23 (4F, s,
CH2CF2); ꢁ121.69 (4F, s, CF2bCH2); ꢁ123.18 (4F, s, (CF2)2). 13C
NMR (DMSO-d6) 174.27 (CO2H Lys); 173.5 (2CH2CO2H); 158.55
(CO urea); 141.37 (C phenyl); 126.6–128.9 (CH phenyl); 64.7 (CH
Lys); 53.7 (CH2CO2H); 39.7 (NHCONHCH2); 39.1 (CH2NHCO);
34.4 (CH2Ph); 28.1ꢁ30.2 (CH2); 21.5–23.6 (CH2).
Acknowledgments
Mass spectrum for PhenylNTANi: (ESI-MS in
a
preseþnce of
ammonium acetate, TOF analyser) m/z: 836 [MꢁNi+2NHþ4 ꢃ , m/z:
We are grateful to Dr R. Thomas and E. Latter for mak-
ing facilities, including the tensiometer and the Langmuir
822 [Mꢁ2H2O+2H]+.
20. Surface tension measurements were made on a Kruss (Hamburg,
¨
´
balance available to us. C. Venien-Bryan thanks the Wel-
Germany) K10T maximum pull digital tensiometer with a Pt/Ir ring.
Solution of PhenylHFNTANi (18 mM) was prepared in chloroform/
hexane (1:1 v/v). C6F13SOTHAM (50 mM) was prepared in water.
21. The surface pressure p, was measured using an automated Wilhelmy
film balance (Nima technology Ltd Coventry, UK). The pressure-
measuring systems was equipped with a filter paper (Whatman 541,
periphery 4 cm). The trough was made from a 535 cm2 Teflon-coated
brass. Solution of PhenylHFNTANi (18 mM) was prepared in
chloroform/hexane (1:1 v/v). C6F13SOTHAM (19 mM) was prepared
in water. Three microliters of the surfactants were spread on the
subphase. The spreading solvent was allowed to evaporate for 15 min
prior to compression. The monolayer was compressed at a speed
of 50 cm2/min. The substrate solution was either distilled water
(surface tension, 73 mN mꢁ1) or a buffer (NaCl 250 mM, Tris 20 mM,
pH 8.0).
come Trust for support (Project Grant 064775). This work
was supported by E.U. Specific Targeted Research Project
IMPS (Innovative tools for membrane protein structural
`
´
proteomics) and the ‘Ministere de l’Enseignement Superieur
et de la Recherche’ (France).
References and notes
1. Thompson, D. H.; Zhou, M.; Grey, J.; Kim, H.-K. Chem. Lett. 2007,
36, 956–975.
2. Dietrich, J.; Venien-Bryan, C. Strategies for Two-dimensional Crys-
tallization of Proteins Using Lipid Monolayers; Imperial College Press,
2005.
22. Pucci, B.; Maurizis, J.-C.; Pavia, A. A. Eur. Polym. J. 1991, 27, 1101–
1106.
3. Jap, B. K.; Zulauf, M.; Scheybani, T.; Hefti, A.; Baumeister, W.;
Aebi, U.; Engel, A. Ultramicroscopy 1992, 46, 45–84.