Organic Letters
Letter
Postgraduate Education and Research Development Office
(PERDO), Ministry of Education, and Thailand Research
Fund through the Royal Golden Jubilee (RGJ) Ph.D. Program
(Grant No. PHD/0217/2558) and Thailand Research Fund
(RSA6080085).
Scheme 6. Proposed Working Reaction Mechanism
REFERENCES
(1) (a) Vila, C.; Hornillos, V.; Giannerini, M.; Fan
Feringa, B. L. Chem. Eur. J. 2014, 20, 13078−13083. (b) Scott, W. J.;
Pena, M. R.; Sward, K.; Stoessel, S. J.; Stille, J. J. Org. Chem. 1985, 50,
2302−2308. (c) Occhiato, E. G.; Trabocchi, A.; Guarna, A. J. Org.
Chem. 2001, 66, 2459−2465. (d) Ackerman, L. K.; Lovell, M. M.;
Weix, D. J. Nature 2015, 524, 454. (e) Garcia Martinez, A.; Osío
■
́
̃
anas-Mastral, M.;
́
Barcina, J.; Colorado Heras, M. d. R.; de Fresno Cerezo, A.
Organometallics 2001, 20, 1020−1023. (f) Ciattini, P. G.; Morera, E.;
Ortar, G. Tetrahedron Lett. 1992, 33, 4815−4818.
(2) (a) Andersson, C. M.; Hallberg, A. J. Org. Chem. 1989, 54,
1502−1505. (b) Kwon, H. B.; McKee, B. H.; Stille, J. J. Org. Chem.
1990, 55, 3114−3118. (c) Vallin, K. S.; Larhed, M.; Johansson, K.;
Hallberg, A. J. Org. Chem. 2000, 65, 4537−4542. (d) Willis, M. C.;
Taylor, D.; Gillmore, A. T. Chem. Commun. 2003, 2222−2223.
(3) (a) Vallin, K. S.; Zhang, Q.; Larhed, M.; Curran, D. P.; Hallberg,
A. J. Org. Chem. 2003, 68, 6639−6645. (b) Ikawa, T.; Nishiyama, T.;
Shigeta, T.; Mohri, S.; Morita, S.; Takayanagi, S. I.; Terauchi, Y.;
Morikawa, Y.; Takagi, A.; Ishikawa, Y. Angew. Chem. 2011, 123,
5792−5795. (c) Stolley, R. M.; Guo, W.; Louie, J. Org. Lett. 2012, 14,
322−325.
hypothesis.15 In this equilibrium TfOH was generated slowly
in the reverse direction. TfOH present in the reaction then
readily added to the terminal alkyne moiety in the starting
material to give the desired product. At this point, the
remaining ratio of TMSN3 and TfOH was 2:1 which forced the
equilibrium to lie even further to the right, effectively reducing
the concentration of TfOH in the reaction mixture, resulting in
low effective concentration of TfOH and became insufficient
to promote the second hydrotriflation. As a result, only
terminal alkyne reacted under these conditions.
In conclusion, a chemoselective hydrotriflation protocol of
terminal alkynes has been developed. Conversion of only
terminal alkynes, in the presence of internal counterparts, to
give 1,1-disubstituted vinyl triflates can be achieved with this
protocol based on the slow generation of TfOH. The current
protocol allowed access to 1,1-disubstituted vinyl triflates from
terminal alkynes even in the presence of internal alkynes. The
protocol is simple and convenient to conduct and allows access
to 1,1-disubstituted vinyl triflates selectively in excellent
efficiencies. This method complements well with other existing
strategies and methods for the generation of vinyl triflates,
especially for generation of the 1,1-disubstituted vinyl triflates.
(4) (a) Shen, X.; Hyde, A. M.; Buchwald, S. L. J. Am. Chem. Soc.
2010, 132, 14076−14078. (b) Shirakawa, E.; Imazaki, Y.; Hayashi, T.
Chem. Commun. 2009, 5088−5090.
(5) (a) Maity, P.; Lepore, S. D. J. Org. Chem. 2009, 74, 158−162.
(b) Ritter, K. Synthesis 1993, 1993, 735−762. (c) Specklin, S.; Bertus,
P.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2008, 73, 7845−7848.
(d) Hargrove, R. J.; Stang, P. J. J. Org. Chem. 1974, 39, 581−582.
(e) Stang, P. J.; Anderson, A. G. J. Am. Chem. Soc. 1978, 100, 1520−
1525. (f) Stang, P. J. Acc. Chem. Res. 1978, 11, 107−114.
́
(6) (a) Dhakal, B.; Bohe, L.; Crich, D. J. Org. Chem. 2017, 82,
9263−9269. (b) Howells, R.; Mc Cown, J. Chem. Rev. 1977, 77, 69−
92.
(7) Lee, P. H.; Park, S. J.; Kim, J. S.; Lee, G. Y. Method for
preparation of alkenyl triflates. Repub. Korean Kongkae Taeho
Kongbo, KR 2014098468, Aug 8, 2014.
(8) Wu, J.-J.; Xu, J.; Zhao, X. Chem. Eur. J. 2016, 22, 15265−15269.
(9) (a) Summerville, R. H.; Senkler, C. A.; Schleyer, P. V. R. J. Am.
Chem. Soc. 1974, 96, 1100−1110. (b) Stang, P. J.; Summerville, R. J.
Am. Chem. Soc. 1969, 91, 4600−4601.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(10) (a) Yang, Y.; Moschetta, E. G.; Rioux, R. M. ChemCatChem
2013, 5, 3005−3013. (b) Yang, Y.; Chang, J.-W.; Rioux, R. M. J.
Catal. 2018, 365, 43−54.
(11) Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Angew. Chem. 2018, 130,
7042−7045.
Optimization, experimental procedures, spectroscopic
data, and NMR spectra of compounds (PDF)
(12) (a) Wang, X.; Studer, A. Org. Lett. 2017, 19, 2977−2980.
(b) Suero, M. G.; Bayle, E. D.; Collins, B. S.; Gaunt, M. J. J. Am.
Chem. Soc. 2013, 135, 5332−5335.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(13) Al-huniti, M. H.; Lepore, S. D. Org. Lett. 2014, 16, 4154−4157.
studies.
(15) Nimnual, P.; Tummatorn, J.; Boekfa, B.; Thongsornkleeb, C.;
Ruchirawat, S.; Piyachat, P.; Punjajom, K. J. Org. Chem. 2019, 84,
experimental study in the formation of TMSOTf in situ.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research work was supported by Chulabhorn Research
Institute, Mahidol University, and the Center of Excellence on
Environmental Health and Toxicology, Science & Technology
D
Org. Lett. XXXX, XXX, XXX−XXX