lecular weights, but their infamous reputation for labor-intensive
and expensive syntheses often precludes their use. The large-
scale production of dendrimers is usually performed by the
divergent approach8 in which an accumulation of statistical
defects is observed at higher generations.9 Introduction of the
convergent route10 in the early 1990s enabled the preparation
of structurally pure dendrimers with high molecular weights.
However, the multiple synthetic steps along with chromato-
graphic workup procedures often take months to prepare
reasonable amounts of a structurally perfect high-generation
dendrimer. Although there were few reports on dendrimers
obtained by one-pot syntheses,11 they did not receive widespread
attention on account of the following limitations. The one-pot
synthesis of structurally pure polycarbonate-type dendrimers was
Persulfonylation of Amines Applied to the
Synthesis of Higher Generation Dendrimers
Oleg Lukin,* Dirk Schubert, Claudia Müller, Mirza Corda,
and Ramchandra Kandre
Institute of Polymers, Department of Materials, ETH Zurich,
HCI G 527, 8093 Zurich, Switzerland
ReceiVed NoVember 1, 2007
restricted to low molar mass (<2 kDa) species,11 whereas in
a
two other cases the prepared dendrimers were shown to suffer
from either polydispersity11 or poor chemical stability.11
b
c
Therefore, the development of straightforward methods for the
preparation of structurally perfect high molecular weight den-
drimers still remains a challenge.
Recently we reported the synthesis of “designer dendrimers”
which carry sulfonimide units at every branching point.12 By
combining the selectivity of the persulfonylation of primary
amines with the repetitive methodology we constructed a
number of selectively decorated and differently shaped sulfon-
imide dendrimers. This synthetic approach has the advantages
of a large variety of readily available, inexpensive bulding blocks
(arylsulfonyl chlorides), high chemical stability of sulfonimides,
and a convenient purification of intermediates by recrystalliza-
tion. Despite the high flexibility of these synthetic schemes there
were several obstacles restricting the synthesis to the low molar
mass (not exceeding 3 kDa) dendritic species with up to eight
peripheral groups. The major difficulty was the clean conversion
of branched intermediates with peripheral p-nitrobenzenesulfo-
nyl (p-Ns) functional groups into corresponding amines. The
second problem preventing the growth of the higher generations
was the poor solubility of dendritic sulfonimides with multiple
peripheral p-Ns units. This completely prevents the purification
of the multiply p-Ns-substituted dendrimers by means of either
Systematic analysis of the persulfonylation of branched
aromatic oligoamines with different arylsulfonyl chlorides
allowed optimization of the repetitive steps involved in the
synthesis of the sulfonimide-based dendrimers. The opti-
mized procedures afforded the fourth generation N- and
pentaphenylene-centered dendrimers with 16 and 32 periph-
eral groups, respectively. Analysis of products of incomplete
substitution showed that the amino groups in aromatic
oligoamines are persulfonylated consecutively.
Dendritic molecules,1 such as dendrimers,1,2 hyperbranched3
and dendronized4 polymers, and molecular “bottle brushes”5 are
essential building blocks for both covalent and supramolecular
assemblies and have promising technological6 and biomedical7
applications. Dendrimers are an example of useful, symmetric,
and monodisperse dendritic molecules with considerable mo-
(8) (a) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin,
S.; Roeck, J.; Ryder, J.; Smith, P. Macromolecules 1986, 19, 2466–2468. (b)
Brabander-van den Berg, E. M. M.; Meijer, E. W. Angew. Chem., Int. Ed. 1993,
32, 1308–1310. (c) Wörner, C.; Mühlhaupt, R. Angew. Chem., Int. Ed. 1993,
32, 1306–1308. (d) Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K J.
Org. Chem. 1985, 50, 2003–2004. (e) Launay, N.; Caminade, A.-M.; Lahana,
R.; Majoral, J.-P. Angew. Chem., Int. Ed. 1994, 33, 1589–1592. (f) Ruiz, J.;
Latuente, H.; Marcen, S.; Ornelas, C.; Lazare, S.; Cloutet, E.; Blais, J.-C.; Astruc,
D. J. Am. Chem. Soc. 2003, 125, 7250–7257. (g) Jayamurugan, G.; Jayaraman,
N. Tetrahedron 2006, 62, 9582–9588. (h) Antoni, P.; Nyström, D.; Hawker,
C. J.; Hult, A.; Malkoch, M. Chem. Commun. 2007, 2249, 2251.
(9) For example, mass spectroscopic analysis of the 5th generation POPAM
dendrimer revealed a structural purity of ca. 20%. See: Hummelen, J. C.; van
Dongen, J. L. J.; Meijer, E. W. Chem. Eur. J. 1997, 3, 1489–1493.
(10) (a) Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638–
7647. (b) Xu, Z.; Moore, J. S. Angew. Chem., Int. Ed. 1993, 32, 246–248. (c)
Miller, T. M.; Neenan, T. X.; Zayas, R.; Bair, H. E. J. Am. Chem. Soc. 1992,
114, 1018–1025.
(1) Vögtle, F.; Richardt, G.; Werner, N. Dendritische Moleküle. Konzepte,
Synthesen, Eigenschaften, Anwendungen; Teubner: Wiesbaden, Germany, 2007.
(2) (a) Archut, A.; Vögtle, F. Chem. Soc. ReV. 1998, 27, 233–240. (b) Smith,
D. K.; Diederich, F. Chem. Eur. J. 1998, 4, 1351–1361. (c) Bosman, A. W.;
Jansen, H. M.; Meijer, E. W. Chem. ReV. 1999, 99, 1665–1688. (d) Fischer, M.;
Vögtle, F. Angew. Chem., Int. Ed. 1999, 38, 884–905. (e) Newkome, G. R.;
Moorefield, C. N.; Vögtle F. Dendrimers and Dendrons. Concepts, Syntheses,
Applications; Wiley-VCH: Weinheim, Germany, 2001. (f) Grayson, S. M.;
Fréchet, J. M. J. Chem. ReV. 2001, 101, 3819–3868.
(3) Gao, C.; Yan, D. Prog. Polym. Sci. 2004, 29, 183–275.
(4) (a) Schlüter, A. D.; Rabe, J. P. Angew. Chem., Int. Ed. 2000, 39, 864–
883. (b) Frauenrath, H. Prog. Polym. Sci. 2005, 30, 325–384.
(5) (a) Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Chem. ReV.
2001, 101, 3747–3792. (b) Zhang, M.; Müller, A. H. E. J. Polym. Sci., Part A:
Polym. Chem. 2005, 43, 3461–3481. (c) Hadjichristidis, N; Iatrou, H.; Pitsikalis,
M.; Mays, J. Prog. Polym. Sci. 2006, 31, 1068–1132.
(6) (a) Nierengarten, J. F. Chem. Eur. J. 2000, 6, 3667–3670. (b) Hecht, S.;
Fréchet, J. M. J. Angew. Chem., Int. Ed. 2001, 40, 74–91. (c) Haag, R. Chem.
Eur. J. 2001, 7, 327–335.
(11) (a) Rannard, S. P.; Davis, N. J. J. Am. Chem. Soc. 2000, 122, 11739–
11730. (b) Okinawa, M.; Takeuchi, K.; Asai, M.; Ueda, M. Macromolecules
2002, 35, 6232–6238. (c) Ornelas, C.; Aranzaes, J. R.; Cloutet, E.; Astruc, D.
Org. Lett. 2006, 8, 2751–2753.
(7) (a) Dennig, J. Top. Curr. Chem. 2003, 228, 227–236. (b) Lee, C. C.;
MacKay, J. A.; Fréchet, J. M. J.; Szoka, F. C. Nat. Biotechnol. 2005, 23, 1517–
1526.
(12) Lukin, O.; Gramlich, V.; Kandre, R.; Zhun, I.; Felder, T.; Schalley,
C. A.; Dolgonos, G. J. Am. Chem. Soc. 2006, 128, 8964–8974.
3562 J. Org. Chem. 2008, 73, 3562–3565
10.1021/jo800179m CCC: $40.75 2008 American Chemical Society
Published on Web 03/22/2008