JOURNAL OF CHEMICAL RESEARCH 2012 739
Table 2 Synthesis of 4-amino-1,2-dihydrobenzo[4,5]imidazo
[1,2-a]pyrimidine-3-carbonitrile derivatives 4a
4-Amino-2-(4-cyanophenyl)-1,2-dihydrobenzo[4,5]imidazo[1,2-a]
pyrimidine-3-carbonitrile (4h):Yield: 92%; yellow solid; m.p. 215 °C
(Dec.). 1H NMR (300 MHz, DMSO-d6): δ = 5.36 (s, 1H), 6.94 (s, 2H),
6.99 (t, J = 8.0 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 7.7 Hz,
1H), 7.45 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 7.7 Hz, 1H), 7.83 (d, J =
8.2 Hz, 2H), 8.71 (brs, 1H). 13C NMR (75 MHz, DMSO-d6): δ = 52.70,
60.73, 110.57, 112.50, 116.18, 118.58, 118.93, 120.02, 123.44,
126.87, 129.20, 132.80, 143.48, 148.23, 149.37, 151.47. MS (ESI):
m/z = 313 ([M + H]+). HRMS (ESI) calcd for C18H13N6 [M + H]+
313.1196; found 313.1189.
4-Amino-2-(pyridin-4-yl)-1,2-dihydrobenzo[4,5]imidazo[1,2-a]
pyrimidine-3-carbonitrile (4i): Yield: 88%; yellow solid; m.p. 215 °C
(Dec.). 1H NMR (300 MHz, DMSO-d6): δ = 5.28 (s, 1H), 6.95 (s, 2H),
6.99 (t, J = 7.6 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 7.21–7.27 (m, 3H),
7.61 (d, J = 7.8 Hz, 1H), 8.49–8.55 (m, 2H), 8.72 (s, 1H). 13C NMR
(75 MHz, DMSO-d6): δ = 52.04, 60.35, 112.52, 116.22, 118.96,
120.05, 120.79, 123.46, 129.20, 143.48, 149.48, 150.09, 151.31,
151.39. MS (ESI): m/z = 289 ([M + H]+). HRMS (ESI) calcd for
C16H13N6 [M + H]+ 289.1196, found 289.1192.
Entry
R1
Time/min Product 4 Yield/%b
1
2
3
4
5
6
7
8
9
C6H5 2a
30
30
60
20
20
20
60
20
20
4a
4b
4c
4d
4e
4f
4g
4h
4i
91
88
86
93
94
94
80
92
88
4-MeC6H4 2b
4-MeOC6H4 2c
4-ClC6H4 2d
3-ClC6H4 2e
2-ClC6H4 2f
4-HOC6H4 2g
4-NCC6H4 2h
4-Pyridyl 2i
a Conditions: 2-aminobenzimidazole 1 (5 mmol), aldehyde 2
(5.5 mmol), malononitrile 3 (5.5 mmol), EtOH (10 mL), reflux
temperature.
This work was supported by the National Natural Science
Foundation of China (grants 30925040, 81102329), the
Chinese National Science & Technology Major Project “Key
New Drug Creation and Manufacturing Program” (grant
2011ZX09307-002-03), and the Science Foundation of
Shanghai (grant 12XD14057).
b Isolated yield.
yields (80–94%) (Table 2, entries 1–8). Therefore, the effect of
the substituents on the benzene ring showed no obvious effect
on this conversion. As shown in Table 2, this experimental pro-
cedure has the ability to tolerate a variety of functional groups,
such as methyl, methoxyl, hydroxyl, cyano, and halides.
Furthermore, 4-pyridinecarboxaldehyde could react smoothly
to give the corresponding products 4i in good yields (88%)
(Table 2, entry 9). Note that all of the condensations were
complete within 60 min and the products 4 could be obtained
simply by filtration from the reaction medium.
In conclusion, a NH4OAc-catalysed synthesis of 4-amino-
1,2-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carbo-
nitrile derivatives 4 from 2-aminobenzimidazole 1, aldehydes 2,
and malononitrile 3 has been described. The catalyst NH4OAc
is not only readily available and cheap, but also much safer
and more practical in comparison to the reported catalysts.
Undoubtedly, all the advantages of the reactions make this
procedure a useful addition to the present methodologies for
heterocyclic synthesis.
Received 13 September 2012; accepted 26 October 2012
Paper 1201514 doi: 10.3184/174751912X13528011362074
Published online: 5 December 2012
References
1
2
3
4
I. Ugi, A. Domling and B. Werner, J. Heterocycl. Chem., 2000, 37, 647.
G. Shanthi and P.T. Perumal, Tetrahedron Lett., 2009, 50, 3959.
S. Shirakawa and S. Kobayashi, Org. Lett., 2006, 8, 4939.
H. Zhang, Z. Zhou, Z.Yao, F. Xu and Q. Shen, Tetrahedron Lett., 2009, 50,
1622.
5
6
M.C. Bagley and M.C. Lubinu, Synthesis, 2006, 1283.
M.M. Heravi, B. Baghernejad and H.A. Oskooie, Tetrahedron Lett., 2009,
50, 767.
7
8
9
X. Huang and T. Zhang, Tetrahedron Lett., 2009, 50, 208.
S. Cui, J. Wang and Y. Wang, Org. Lett., 2008, 10, 1267.
G. Trapani, M. Franco, A. Latrofa, G. Genchi, V. Iacobazzi, C.A. Ghiani,
E. Maciocco and G. Liso, Eur. J. Med. Chem., 1997, 32, 83.
10 A. Gueiffieri, Y. Blache, J.P. Chapat, E.M.E. Elhakmaoui, G. Andrei,
R. Snoeck, E. De Clercq, O. Chavignon, J.C. Teulade and F. Fauvelle,
Nucleosides Nucleotides, 1995, 14, 551.
11 L. Dalla-Via, O. Gia, S.M. Magno, A. Da Settimo, A.M. Marini,
G. Primofiore, F. Da-Settimo and S. Salaerno, Il Farmaco., 2001, 65, 159.
12 Y. Rival, G. Grassy and G. Michel, Chem. Pharm. Bull., 1992, 40, 1170.
13. Y. Rival, G. Grassy, A. Tauduo and R. Ecalle, Eur. J. Med. Chem., 1991, 26,
13.
14 J.E. De-Araujo, J.P. Huston and M. Brandao, Eur. J. Pharmac., 2001, 432,
43.
15 N. Wonda and Z. Michal, Arch. Pharm., 1999, 337, 249.
16 G. Trapani, M. Farnco, A. Latrofa, G. Genchi and V. Iacobazzi, Eur. J. Med.
Chem., 1997, 32, 83.
Experimental
Melting points were measured by a WRS-1B micromelting point
apparatus and are uncorrected. NMR spectra were recorded on a
Bruker AMX 300 instrument or Bruker AMX 400 instrument using
solvent peaks as DMSO-d6 solutions. HRESIMS were determined on
a Micromass Q-Tof Global mass spectrometer and ESIMS were run
on a Bruker Esquire 3000 Plus Spectrometer. TLC was performed on
GF254 silica gel plates (Yantai Huiyou Inc., China).
Synthesis of 4a–i; general procedure
A mixture of aldehyde 2 (5.5 mmol), malononitrile 3 (5.5 mmol), and
NH4OAc (10 mol%) in EtOH (10 mL) was stirred for 5 min. Then
2-aminobenzimidazole 1 (5 mmol) was added and mixture was heated
to reflux for an appropriate time (Table 2). After completion of the
reaction (TLC), the solid was collected by filtration, purified via
recrystallisation from ethanol to give 4-amino-1,2-dihydrobenzo[4,5]
imidazo[1,2-a]pyrimidine-3-carbonitrile derivatives 4.
17 A. Dandia, R. Singh, A.K. Jain and D. Singh, Synth. Commun., 2008, 38,
3543.
18 G. Liu, Q. Shao, S. Tu, L. Cao, C. Li, D. Zhou and B. Han, J. Heterocycl.
Chem., 2008, 45, 1127.
19 A. Dandia, P. Sarawgi, A.L. Bingham, J.E. Drake, M.B. Hursthouse,
M.E. Light and R. Ratnani, J. Chem. Res., 2007, 155.
20 H. Sheibani and F. Hassani, J. Heterocycl. Chem., 2011, 48, 915.
21 Y.R. Ibrahim, J. Chem. Res., 2009, 8, 495
4-Amino-2-(4-hydroxyphenyl)-1,2-dihydrobenzo[4,5]imidazo[1,2-a]
pyrimidine-3-carbonitrile (4g): Yield: 93%; white solid; m.p. 215 °C
22 M.D. Wendt, A. Kunzer, R.F. Henry, J. Cross and T.G. Pagano, Tetrahedron
Lett., 2007, 48, 6360.
23 B. Insuasty, A. Salcedo, R. Abonia, J. Quiroga, M. Nogueras and
A. Sanchez, Heterocycl. Commun., 2002, 8, 287.
24 F.A. Bassyouni and I.I. Ismail, Afinidad., 2011, 58, 375.
25 S.A. Komykhov, S.K. Ostras, A.R. Kostanyan, S.M. Desenko, D.V. Orlov
and H. Meier, J. Heterocycl. Chem., 2005, 42, 1111.
26 E.I. El-Desoky, S. Aboul-Fetouh and M.A. Metwally, J. Chem. Technol.
Biotechnol., 1996, 67, 153.
1
(Dec.). H NMR (300 MHz, DMSO-d6): δ = 5.07 (s, 1H), 6.70 (d,
J = 8.0 Hz, 2H), 6.75 (s, 2H), 6.97 (t, J = 7.6 Hz, 1H), 7.02–7.12 (m,
3H), 7.19 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 8.45 (brs, 1H),
9.44 (brs, 1H). 13C NMR (75 MHz, DMSO-d6): δ = 52.93, 62.54,
112.34, 115.25, 115.95, 119.19, 119.70, 123.20, 127.27, 129.29,
133.13, 143.63, 148.91, 151.73, 157.06. MS (ESI): m/z = 304 ([M +
H]+). HRMS (ESI) calcd for C17H14N5O [M + H]+ 304.1193; found
304.1187.
27 M. Lei, L. Ma and L. Hu, Tetrahedron Lett., 2011, 52, 2597.