carbon-carbon bond-forming reactions for the synthesis of
nitrogenous molecules, such as diamino acid derivatives6 and
amino alcohols, which can lead to the generation of two
contiguous nitrogen-bearing stereogenic centers. Thus, we report
a novel and convenient approach to generate optically pure 2,3-
diamino acids in high yields with excellent diastereoselectivity
via asymmetric Mannich reaction of N-protected imines with
zinc enolates of tricyclic iminolactones 1a and 1b7 derived from
natural (1R)-(+)-camphor.
A Convenient Route to Enantiopure
3-Aryl-2,3-diaminopropanoic Acids by
Diastereoselective Mannich Reaction of
Camphor-Based Tricyclic Iminolactone with
Imines
Huan-Huan Zhang, Xiu-Qin Hu, Xiao Wang,
Yong-Chun Luo, and Peng-Fei Xu*
Our investigation began with the reaction of iminolactone
1a with various N-aryl-substituted imines, but no Mannich
adducts were detected. Given the low reactivity of imines in
this nucleophilic addition, a strong electron-withdrawing group,
such as sulfonyl, was introduced on the nitrogen atom of the
imine in order to activate the CdN bond. Fortunately, we found
that N-tosyl-C-phenyl imine 2a reacted smoothly with imino-
lactone 1a at -78 °C in THF using LDA as the base to afford
a mixture of diastereomeric adducts. The result suggested that
the electron-withdrawing imine-protecting group played an
important role in this nucleophilic addition. Thus, we chose the
N-tosyl-C-phenyl imine 2a as a substrate for further investigation.
In an attempt to improve the yield and the diastereoselec-
tivity, we carried out a series of experiments varying the
additives and bases used. Representative results are listed in
Table 1. Commonly used additives, such as LiCl, DMPU, or
Et2AlCl, either failed to promote the reaction (entry 1) or
gave the addition adducts in low yields with poor diastereo-
State Key Laboratory of Applied Organic Chemistry, College of
Chemistry and Chemical Engineering, Lanzhou UniVersity,
Lanzhou, Gansu 730000, People’s Republic of China
ReceiVed January 20, 2008
A novel and convenient route to the asymmetric synthesis
of 2,3-diamino acids via Mannich reaction of iminolactones
1a and 1b with N-protected imines has been achieved in good
yields (up to 95%) and high diastereoselectivity (dr: >99:1).
Hydrolysis of the Mannich adducts under acidic conditions
furnished the desired 3-aryl-2,3-diaminopropanoic acids in
good yields (up to 85%) with excellent enantiomeric excesses
(99% ee).
(3) For summaries of the existing literature of the synthesis of 2,3-diamino
acids, see: (a) Han, H.; Yoon, J.; Janda, K. D. J. Org. Chem. 1998, 63, 2045.
(b) Lee, S.-H.; Yoon, J.; Chung, S.-H.; Lee, Y.-S. Tetrahedron 2001, 57, 2139.
(c) Zhou, X.-T.; Lin, Y.-R.; Dai, L.-X. Tetrahedron: Asymmetry 1999, 10, 855.
(d) Capone, S.; Guaragna, A.; Palumbo, G.; Pedatella, S. Tetrahedron 2005, 61,
6575. (e) Nadir, U. K.; Krishna, R. V.; Singh, A. Tetrahedron Lett. 2005, 46,
479. (f) Durham, T. B.; Miller, M. J. J. Org. Chem. 2003, 68, 35. (g) Robinson,
A. J.; Stanislawski, P.; Mulholland, D.; He, L.; Li, H.-Y. J. Org. Chem. 2001,
66, 4148. (h) Li, B.-F.; Yuan, K.; Zhang, M.-J.; Wu, H.; Dai, L.-X.; Wang,
Q.-R.; Hou, X.-L. J. Org. Chem. 2003, 68, 6264. (i) Viso, A.; Fernández de la
Pradilla, R.; López-Rodríguez, M. L.; García, A.; Flores, A.; Alonso, M. J. Org.
Chem. 2004, 69, 1542. (j) Wang, D.; Zhang, P.-F.; Yu, B. HelV. Chim. Acta
2007, 90, 938. (k) Viso, A.; Fernández de la Pradilla, R.; García, A.; Guerrero-
Strachan, C.; Alonso, M.; Tortosa, M.; Flores, A.; Martínez-Ripoll, M.; Fonseca,
I.; André, I.; Rodríguez, A. Chem. Eur. J. 2003, 9, 2867. (l) Tranchant, M.-J.;
Dalla, V. Tetrahedron 2006, 62, 10255. (m) Knudsen, K. R.; Risgaard, T.;
Nishiwaki, N.; Gothelf, K. V.; Jørgensen, K. A. J. Am. Chem. Soc. 2001, 123,
5843. (n) Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc.
2007, 129, 3466. (o) Chen, Z.; Morimoto, H.; Matsunaga, S.; Shibasaki, M.
J. Am. Chem. Soc. 2008, 130, 2170.
Optically active 2,3-diamino acids are an important class of
compounds due to their presence in a variety of peptide
antibiotics, antifungal dipeptides, and other biologically active
compounds.1 One example is (2R,3S)-2,3-diamino-3-phenyl-
propanoic acid, which is an alternative side chain of taxol to
improve its water solubility.2 As a consequence, a range of
methods to synthesize optically active 2,3-diamino acid deriva-
tives have been reported so far.3 However, almost all of them
suffer from one or more drawbacks including lack of generality,
low-yielding, or complex procedures. Furthermore, to the best
of our knowledge, there have been only a few reports for the
synthesis of free 2,3-diamino acids.3b,4 The Mannich reaction5
was discovered in 1912 and is one of the most important
(4) (a) Alker, D.; Harwood, L. M.; Williams, C. E. Tetrahedron Lett. 1998,
39, 475. (b) Bunnage, M. E.; Burke, A. J.; Davies, S. G.; Millican, N. L.;
Nicholson, R. L.; Roberts, P. M.; Smith, A. D. Org. Biomol. Chem. 2003, 1,
3708.
(5) Mannich, C.; Krösche, W. Arch. Pharm. 1912, 250, 647.
(6) For recent examples of the asymmetric Mannich reaction to synthesize
2,3-diamino acid derivatives, see: (a) Nishiwaki, N.; Knudsen, K. R.; Gothelf,
K. V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2992. (b) Bernardi,
L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68,
2583. (c) Davis, F. A.; Deng, J. Org. Lett. 2004, 6, 2789. (d) Ooi, T.; Kameda,
M.; Fujii, J.-i.; Maruoka, K. Org. Lett. 2004, 6, 2397. (e) Salter, M. M.;
Kobayashi, J.; Shimizu, Y.; Kobayashi, S. Org. Lett. 2006, 8, 3533. (f) Davis,
F. A.; Zhang, Y.; Qiu, H. Org. Lett. 2007, 9, 833. (g) Cutting, G. A.; Stainforth,
N. E.; John, M. P.; Kociok-Kohn, G.; Willis, M. C. J. Am. Chem. Soc. 2007,
129, 10632. (h) DeMong, D. E.; Williams, R. M. J. Am. Chem. Soc. 2003, 125,
8561. (i) DeMong, D. E.; Williams, R. M. Tetrahedron Lett. 2001, 42, 3529.
(7) (a) Xu, P.-F.; Chen, Y.-S.; Lin, S.-I.; Lu, T.-J. J. Org. Chem. 2002, 67,
2309. (b) Xu, P.-F.; Lu, T.-J. J. Org. Chem. 2003, 68, 658. (c) Li, S.; Hui,
X.-P.; Yang, S.-B.; Jia, Z.-J.; Xu, P.-F.; Lu, T.-J. Tetrahedron: Asymmetry 2005,
16, 1729. (d) Xu, P.-F.; Li, S.; Lu, T.-J.; Wu, C.-C.; Fan, B.; Golfis, G. J. Org.
Chem. 2006, 71, 4364.
(1) For a comprehensive summary of biologically active 2,3-diamino acids,
see: (a) Dunn, P. J.; Häner, R.; Rapoport, H. J. Org. Chem. 1990, 55, 5017. (b)
Lucet, D.; Gall, T. L.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580.
(c) Westermann, B. Angew. Chem., Int. Ed. 2003, 42, 151. (d) Wang, M.; Gould,
S. J. J. Org. Chem. 1993, 58, 5176. (e) Webber, S. E.; Okano, K.; Little, T. L.;
Reich, S. H.; Xin, Y.; Worland, S. T.; Fuhrman, S. A.; Matthews, D. A.; Love,
R. A.; Hendrickson, T. F.; Patick, A. K.; Meador, J. W.; Ferre, R. A.; Brown,
E. L.; Ford, C. E.; Binford, S. L. J. Med. Chem. 1998, 41, 2786. (f) Viso, A.;
Fernández de la Pradilla, R.; García, A.; Flores, A. Chem. ReV. 2005, 105, 3167.
and references cited therein.
(2) (a) Rossi, F. M.; Powers, E. T.; Yoon, R.; Rosenberg, L.; Meinwald, J.
Tetrahedron 1996, 52, 10279. (b) Moyna, G.; Williams, H. J.; Scott, A. I. Synth.
Commun. 1997, 27, 1561.
3634 J. Org. Chem. 2008, 73, 3634–3637
10.1021/jo8001408 CCC: $40.75 2008 American Chemical Society
Published on Web 03/26/2008