August 2007
1285
Chart 3
Chart 4
(1), which was acetylated without purification to provide the
N,O-diacetyl derivative (15), mp 108—111 °C, [a]D25 ꢁ26.2°
(cꢂ0.30, CHCl3) {lit.5) mp 95—98 °C, [a]D22 ꢁ22.6° (cꢂ1.0,
CDCl3), lit.7) [a]D ꢁ28.4° (cꢂ1.0, CHCl3)}, in 85% yield
from 2 (Chart 4). Spectroscopic data of 1527) were identical
to those of the reported sample.
In summary, we demonstrated a simple and concise enan-
tioselective total synthesis of (ꢀ)-1 starting from a,b-unsat-
urated ester (6) using asymmetric dihydroxylation and C–H
amination reaction as key steps. Further investigation for im-
provement of the C–H amination of 3 is now underway in our
laboratory.
Chart 2
Table 1. Rh(II)-Catalyzed C–H Amination of 3a)
Yield (%)
13
No reaction
Entry
Rh(II)
Solvent
Time (h)
2
1
2
3
4
Rh2(OAc)4
Rh2(OAc)4
Rh2(OCOCPh3)4
Rh(esp)2
CH2Cl2
13
13
13
21
Benzene
Benzene
Benzene
0
58
40
15
19
10
a) Reactions were carried out using 10 mol% of Rh(II) catalyst, 4.2 eq of PhI(OAc)2,
and 6.9 eq of MgO under reflux.
References and Notes
1) Kuroda I., Musman M., Ohtani I. I., Ichiba T., Tanaka J., Gravalos D.
G., Higa T., J. Nat. Prod., 65, 1505—1506 (2002).
2) Ledroit V., Debitus C., Lavaud C., Massiot G., Tetrahedron Lett., 44,
225—228 (2003).
3) Sudhakar N., Kumar A. R., Prabhakar A., Jagadeesh B., Rao B. V.,
Tetrahedron Lett., 46, 325—327 (2005).
4) Bhaket P., Morris K., Stauffer C. S., Datta A., Org. Lett., 7, 875—876
(2005).
5) van den Berg R. J. B. H. N., Boltje T. J., Verhagen C. P., Litjens R. E. J.
N., van der Marel G. A., Overkleeft H. S., J. Org. Chem., 71, 836—
839 (2006).
6) Du Y., Liu J., Linhardt R. J., J. Org. Chem., 71, 1251—1253 (2006).
7) Ribes C., Falomir E., Carda M., Marco J. A., Tetrahedron, 62, 5421—
5425 (2006).
8) Ramana C. V., Giri A. G., Suryawanshi S. B., Gonnade R. G., Tetrahe-
dron Lett., 48, 265—268 (2007).
9) Lee T., Lee S., Kwak Y. S., Kim D., Kim S., Org. Lett., 9, 429—432
(2007).
10) Reddy L. V. R., Reddy P. V., Shaw A. K., Tetrahedron: Asymmetry, 18,
542—546 (2007).
diacetate, and 6.9 equivalents of magnesium oxide in di-
chloromethane under reflux,19—21) however, gave no reac-
tion with recovered starting 3 (Entry 1). A similar reaction in
refluxing benzene for 13 h proceeded, unfortunately, to
afford only undesired 2-tetradecatetrahydrofuran-3-one (13)
in 58% yield with a complex mixture (Entry 2). The forma-
tion of 13 would be caused either by direct abstraction of
C3–H by rhodium nitrenoid intermediate (A) or through the
generation of four-membered ring species (14) (Chart 3).12)
This speculation spurred our use of a dirhodium(II)
catalyst having bulkier ligands. When 3 was treated with
dirhodium(II) tetra(triphenylacetate), 4.2 equivalents of
phenyliodine(III) diacetate, and 6.9 equivalents of magne-
sium oxide in benzene under reflux for 13 h, the desired 2
was obtained in 19% yield (Entry 3).25) However, ketone (13)
was still produced as a major product in 40% yield. Use of
dirhodium dirhodium(II) bis(a,a,aꢃ,aꢃ-tetramethyl-1,3-ben-
zenedipropanoate) [Rh2(esp)2]26) gave low yields of both 2
and 13 with a complex mixture (Entry 4).
11) Espino C. G., Du Bois J., Angew. Chem. Int. Ed., 40, 598—600 (2001).
12) Espino C. G., Du Bois J., “Modern Rhodium-Catalyzed Organic Reac-
tions,” ed. by Evans P. A., Wiley-VCH, Weinheim, 2005, pp. 379—
416.
13) Davies H. M. L., Long M. S., Angew. Chem. Int. Ed., 44, 3518—3520
(2005).
Finally, 2 was hydrolyzed using potassium hydroxide in
ethanol under reflux for 3 h to afford (ꢀ)-pachastrissamine
14) Trost B. M., Gunzner J. L., Dirat O., Rhee Y. H., J. Am. Chem. Soc.,
124, 10396—10415 (2002).