Gushchin et al.
per-23,24 or nickel-mediated25 hydrolytic conversion of 1,3,5-
triazine23,25 or 1,3,5-tris(2-pyridyl)-2,4,6-triazine,24 (iii) hy-
drolytic conversion of RCN mediated by the dinuclear
nickel(II) complex [Ni2(µ-OH)2(tpa)2](ClO4)2 (tpa ) tris-(2-
pyridylmethyl)amine)26 or Ni(II) acetate,27 (iv) evaporating
a MeOH solution of NiCl2 ·6H2O and acetamidine,28 and (v)
Chart 1. Skeletons of 1,3-Dicarbonyl (A), 1,5-Diazapentadienyl (B),
and 1,3,5-Triazapentadienyl (C) Species
labile metal centers have intrinsic practical applications: e.g.,
as polymerization catalysts.7–9
29
10,11
by oxime-assisted conversion of nitriles at PtII and NiII
The trinitrogen analogues of the 1,3-dicarbonyls, i.e. 1,3,5-
triazapentadienyl (or imidoylamidine) species (C), have been
substantially less explored than the relevant A and B systems,
but they deserve special attention from coordination chemists,
as C ligands offer an additional coordination site at the
central nitrogen atom, especially in their anionic form.
Moreover, this N atom takes part in facile acid–base
equilibria,10–12 thus providing pH sensing properties to their
complexes: e.g., those exhibiting luminescent properties.12
Despite the obvious advantages and potential of the 1,3,5-
triazapentadienyl chelating systems, these species are small
in number, since as facile and general synthetic methods for
their generation have thus far been rather poorly developed.
Thus, reactions between the preprepared 1,3,5-triazapen-
tadiene and metal sources are rather rare because the ligands,
especially those with donor substituents, are highly reactive
and therefore many of them are elusiVe in the free state.
Direct metal–ligand reactions have been realized only with
stable 1,3,5-triazapentadienes, which bear strong electron
acceptor groups at the C atoms, e.g. fluoroalkyls, and they
are N substituted, e.g. NAr.13–18
centers.
In the course of our ongoing studies on reactions of metal-
activated nitriles,30 giving in particular 1,3,5-triazapentadiene
complexes,10–12,20 we have discovered a novel tailoring
reaction between the guanidine NHdC(NHPh)2 (DPG) and
two cis nitriles at the PtII center, leading to platinum(II) 1,3,5-
triazapentadiene complexes. The developed method, which
is based on this reaction, represents a facile route to (1,3,5-
triazapentadiene)PtII species with luminescent properties.
Details of these results are elaborated in this article.
Results and Discussion
We have recently reported31 on the coupling between
tetramethylguanidine (HNdC(NMe2)2) and coordinated or-
ganonitriles in the platinum(II) complexes cis-/trans-
[PtCl2(RCN)2] (R ) Me, Et, Ph), which proceeded rapidly
(13) Dias, H. V. R.; Singh, S. Dalton Trans 2006, 1995. Dias, H. V. R.;
Singh, S. Inorg. Chem. 2004, 43, 7396. Dias, H. V. R.; Singh, S. Inorg.
Chem. 2004, 43, 5786.
(14) Siedle, A. R.; Webb, R. J.; Brostrom, M.; Newmark, R. A.; Behr,
F. E.; Young, V. G., Jr. Organometallics 2004, 23, 2281. Siedle, A. R.;
Webb, R. J.; Behr, F. E.; Newmark, R. A.; Weil, D. A.; Erickson, K.;
Naujok, R.; Brostrom, M.; Mueller, M.; Chou, S.-H.; Young, V. G.,
Jr. Inorg. Chem. 2003, 42, 932.
(15) Hesse, N.; Fröhlich, R.; Humelnicu, I.; Würthwein, E.-U. Eur. J. Inorg.
Chem. 2005, 2189.
(16) Ley, H.; Müller, F. Ber. Dtsch. Chem. Ges 1907, 40, 2950.
(17) Breuer, S. W.; Small, R. W. H. Acta Crystallogr. 1991, C47, 871.
(18) Walther, M.; Wermann, K.; Lutsche, M.; Günther, W.; Görls, H.;
Anders, E. J. Org. Chem. 2006, 71, 1399.
The unstable 1,3,5-triazapentadienes, which are unsubsti-
tuted at the NH groups and/or contain donor substituents at
the carbon atoms (C), are typically prepared by metal-
mediated reactions such as (i) coupling between amidine(ate)s
and nitriles electrophilically activated by ligation to MII
22
20
(PtII,12,19,20 PdII,19,21 NiII ) and PtIV centers, (ii) cop-
(4) Brown, E. C.; Bar-Nahum, I.; York, J. T.; Aboelella, N. W.; Tolman,
W. B. Inorg. Chem. 2007, 46, 486. Tonzetich, Z. J.; Jiang, A. J.;
Schrock, R. R.; Müller, P. Organometallics 2006, 25, 4725. Thompson,
J. S.; Bradley, A. Z.; Park, K.-H.; Dobbs, K. D.; Marshall, W.
Organometallics 2006, 25, 2712. Gherman, B. F.; Tolman, W. B.;
Cramer, C. J. J. Comput. Chem. 2006, 27, 1950.
(5) York, J. T.; Llobet, A.; Cramer, C. J.; Tolman, W. B. J. Am. Chem.
Soc. 2007, 129, 7990. Sadique, A. R.; Gregory, E. A.; Brennessel,
W. W.; Holland, P. L. J. Am. Chem. Soc. 2007, 129, 8112. Ruspic,
C.; Nembenna, S.; Hofmeister, A.; Magull, J.; Harder, S.; Roesky,
H. W. J. Am. Chem. Soc. 2006, 128, 15000.
(6) Shimokawa, C.; Teraoka, J.; Tachi, Y.; Itoh, S. I. Inorg. Biochem.
2006, 100, 1118. Aboelella, N. W.; Gherman, B. F.; Hill, L. M. R.;
York, J. T.; Holm, N.; Young, V. G.; Cramer, C. J.; Tolman, W. B.
J. Am. Chem. Soc. 2006, 128, 3445. Cotton, S. A. Annu. Rep. Prog.
Chem., Sect. A: Inorg. Chem. 2005, 101, 208.
(7) Li, Y.; Wang, L.; Gao, H.; Zhu, F.; Wu, Q. Appl. Organomet. Chem.
2006, 20, 436. Smith, K. M. Curr. Org. Chem. 2006, 10, 955.
(8) Li, Y.; Jiang, L.; Wang, L.; Gao, H.; Zhu, F.; Wu, Q. Appl. Organomet.
Chem. 2006, 20, 181. Yao, Y.; Zhang, Z.; Peng, H.; Zhang, Y.; Shen,
Q.; Lin, J. Inorg. Chem. 2006, 45, 2175.
(19) Baker, J.; Kilner, M.; Mahmoud, M. M.; Wallwork, S. C. J. Chem.
Soc., Dalton Trans. 1989, 837.
(20) Bokach, N. A.; Kuznetsova, T. V.; Simanova, S. A.; Haukka, M.;
Pombeiro, A. J. L.; Kukushkin, V. Yu. Inorg. Chem. 2005, 44, 5152.
(21) Guo, J.-P.; Wong, W.-K.; Wong, W.-Y. Eur. J. Inorg. Chem. 2006,
3634.
(22) Guo, J.-P.; Wong, W.-K.; Wong, W.-Y. Eur. J. Inorg. Chem. 2004,
267.
(23) Turnbull, M. M.; Wei, M. Y.; Willett, R. D. J. Coord. Chem. 1995,
35, 11.
(24) Kajiwara, T.; Kamiyama, A. Chem. Commun 2002, 1256. Kajiwara,
T.; Kamiyama, A.; Ito, T. Inorg. Chim. Acta 2003, 22, 1789.
Kamiyama, A.; Noguchi, T.; Kajiwara, T.; Ito, T. Inorg. Chem. 2002,
41, 507. Lerner, E. I.; Lippard, S. J. J. Am. Chem. Soc. 1976, 98,
5397.
(25) Kajiwara, T.; Ito, T. Eur. J. Inorg. Chem. 2004, 3084.
(26) Kryatov, S. V.; Nazarenko, A. Y.; Smith, M. B.; Rybak-Akimova,
E. V. Chem. Commun. 2001, 1174.
(27) Guzei, I. A.; Crozier, K. R.; Nelson, K. J.; Pinkert, J. C.; Schoenfeldt,
N. J.; Shepardson, K. E.; McGaff, R. W. Inorg. Chim. Acta 2006,
359, 1169.
(9) Fabri, F.; Muterle, R. B.; de Oliveira, W.; Schuchardt, U. Polymer
2006, 47, 4544. Sánchez-Barba, L. F.; Hughes, D. L.; Humphrey,
S. M.; Bochmann, M. Organometallics 2006, 25, 1012. Vitanova,
D. V.; Hampel, F.; Hultzsch, K. C. J. Organomet. Chem. 2005, 690,
5182.
(10) Kopylovich, M. N.; Pombeiro, A. J. L.; Fischer, A.; Kloo, L.;
Kukushkin, V. Yu. Inorg. Chem. 2003, 42, 7239.
(11) Kopylovich, M. N.; Haukka, M.; Kirillov, A. M.; Kukushkin, V. Yu.;
Pombeiro, A. J. L. Chem. Eur. J. 2007, 13, 786.
(12) Sarova, G. H.; Bokach, N. A.; Fedorov, A. A.; Berberan-Santos, M. N.;
Kukushkin, V. Yu.; Haukka, M.; Fraústo-da-Silva, J. J. R.; Pombeiro,
A. J. L. Dalton Trans. 2006, 3798.
(28) Norrestam, R. Acta Crystallogr., Sect. C 1984, 40, 955.
(29) Guedes da Silva, M. F. C.; Ferreira, C. M. P.; Branco, E. M. P. R. P.;
Fraústo da Silva, J. J. R.; Pombeiro, A. J. L.; Michelin, R. A.; Belluco,
U.; Bertani, R.; Mozzon, M.; Bombieri, G.; Benetollo, F.; Kukushkin,
V. Yu. Inorg. Chim. Acta 1997, 265, 267 (Topical Volume on Platinum
Chemistry)
(30) For reviews see: Kukushkin, V. Yu.; Pombeiro, A. J. L. Chem. ReV.
2002, 102, 1771. Pombeiro, A. J. L.; Kukushkin, V. Yu. Reactions of
Coordinated Nitriles. In ComprehensiVe Coordination Chemistry, 2nd
ed.; Elsevier: Amsterdam, 2004; Vol. 1, Chapter 1.34, pp 639–660.
(31) Gushchin, P. V.; Bokach, N. A.; Luzyanin, K. V.; Nazarov, A. A.;
Haukka, M.; Kukushkin, V. Yu. Inorg. Chem. 2007, 46, 1684.
11488 Inorganic Chemistry, Vol. 47, No. 24, 2008