C O M M U N I C A T I O N S
Scheme 4
Scheme 5. Synthesis of Linear Tetraenes with Four Different
Alkynes
Table 1. Synthesis of Linear Trienes with Three Different Alkynes
skeleton has Z,Z,Z geometry, and the three alkynes were
connected in the expected order. As the same way, bis(p-fluoro-,
and p-methoxyphenyl)acetylenes, methyl propiolate, 3-butyn-
2-one, and dibenzoylacetylene were also applicable for the
reactions without significant loss of selectivity (entries 4–9).
Furthermore, the zirconium-mediated successive coupling
reaction was extended for linear tetraene formation as shown
in Scheme 5. The alkenylcopper intermediate 3-Cu prepared
as above was reacted with tosylacetylene at room temperature
to afford the corresponding tetraene 4a in moderate to good
yields with high regio- and stereoselectivity. The other tetraenes
4b and 4c were also obtained in 68 and 30% yields, respectively.
X-ray crystallographical analysis was carried out for tetraene
4a and confirmed the structure and stereochemistry.
Supporting Information Available: Detailed experimental
procedures, spectral data for new compounds, and results of X-ray
crystallographical analyses for 3e, and 4a. This material is available
References
(1) (a) Reviews for oligomerization of alkynes: Grotjahn, D. B. In ComprehensiVe
Organometallic Chemistry II; Hegedus, L. S., Abel, E. W., Stone, F. G. A.,
Wilkinson, G., Eds.; Pergamon: Oxford, U.K., 1995; Vol. 12, pp 753–
770. (b) Shore, N. E. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming I., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 5, pp 1152–1162.
(2) (a) Reviews for monodisperse π-conjugated oligomers, see : Tour, J. M.
Chem. ReV. 1996, 96, 537–553. (b) Pu, L. Chem. ReV. 1998, 98, 2405–
2494. (c) Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38,
1350–1377. (d) Berresheim, A. J.; Muller, M.; Mullen, K. Chem. ReV. 1999,
99, 1747–1786. (e) Roncali, J. Acc. Chem. Res. 2000, 33, 147–156.
(3) (a) Examples of metal-mediated linear oligomerization of alkynes: Eisch,
J. J.; Ma, X.; Han, K. I.; Gitua, J. N.; Krüger, C. Eur. J. Inorg. Chem.
2001, 77–88. (b) Bruce, M. I.; Hall, B. C.; Skelton, B. W.; White, A. H.;
Zaitseva, N. N. J. Chem. Soc., Dalton Trans. 2000, 2279. (c) Haskel, A.;
Straub, T.; Dash, A. K.; Eisen, M. S. J. Am. Chem. Soc. 1999, 121, 3014.
(d) Haskel, A.; Wang, J.; Straub, T.; Neyround, T. G.; Eisen, M. S. J. Am.
Chem. Soc. 1999, 121, 3025. (e) Burrows, A. D.; Green, M.; Jeffery, J. C.;
Lynam, J. M.; Mahon, M. F. Angew. Chem., Int. Ed. 1999, 38, 3043. (f)
Biagini, P.; Caporusso, A. M.; Funaioli, T.; Fachinetti, G. Angew. Chem.
1989, 101, 1079. (g) Shirakawa, E.; Yoshida, H.; Nakao, Y.; Hiyama, T.
J. Am. Chem. Soc. 1999, 121, 4290–4291.
(4) Takahashi, T.; Xi, Z.; Yamazaki, A.; Liu, Y.; Nakajima, K.; Kotora, M.
J. Am. Chem. Soc. 1998, 120, 1672.
a E ) CO2Me, E′ ) CO2Et, Ar1 ) p-F-C6H4-, Ar2 ) p-MeO-C6H4-.
The insertion into the 3rd alkyne was carried out at 0 °C for 12 h.
b Stereochemistry of the products were made by analogy from the
structures of 3e and 4a. Ratio of three alkynes used: 1:1:1, except 3j
and 3m (1:1:4). c NMR yields. Isolated yields were given in parentheses.
Yields were based on first alkynes. d Triene 3i was obtained as a
mixture with the minor isomer in a ratio of 93:7.
(5) Takahashi, T.; Liu, Y.; Iesato, A.; Chaki, S.; Nakajima, K.; Kanno, K.
J. Am. Chem. Soc. 2005, 127, 11928.
(6) (a) Takahashi, T.; Kotora, M.; Xi, Z. J. Chem. Soc.,Chem. Commun. 1995,
361–362. (b) Takahashi, T.; Tsai, F.-Y.; Li, Y.; Nakajima, K.; Kotora, M.
J. Am. Chem. Soc. 1999, 121, 11093–11100. (c) Takahashi, T.; Tsai,
F.-Y.; Kotora, M. J. Am. Chem. Soc. 2000, 122, 4994–4995. (d) Takahashi,
T.; Tsai, F.-Y.; Li, Y.; Wang, H.; Kondo, Y.; Yamanaka, M.; Nakajima,
K.; Kotora, M. J. Am. Chem. Soc. 2002, 124, 5059.
(7) (a) Xi, Z.; Hara, R.; Takahashi, T. J. Org. Chem. 1995, 60, 4444–4448.
(b) Takahashi, T.; Kageyama, M.; Denisov, V.; Hara, R.; Negishi, E.
Tetrahedron Lett. 1993, 34, 687–690.
(8) Ubayama, H.; Xi, Z.; Takahashi, T. Chem. Lett. 1998, 517–518.
(9) Lipshutz, B. H.; Pfeiffer, S. S.; Noson, K.; Tomioka, T. In Titanium and
Zirconium in Organic Synthesis; Marek, I. Ed.; Wiley-VCH; Weinheim,
Germany, 2002; pp 110–148.
(10) (a) Gardette, M.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. 1982, 23,
5155. (b) Normant, J. F.; Alexakis, A. Synthesis 1981, 841–870.
quenching with NCS, the third alkyne was inserted in the
presence of CuCl to afford the corresponding linear triene 3
after hydrolysis. When diphenylacetylene, 3-hexyne, and DMAD
were employed for the reaction, the selective and successive
coupling of these alkynes occurred to afford the desired triene
3e in high yield (entry 1). The structure of triene 3e was
unambiguously confirmed by X-ray crystallography. The triene
JA8000387
9
J. AM. CHEM. SOC. VOL. 130, NO. 17, 2008 5625