1834
E. M. Doherty et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1830–1834
Westaway, S. M. J. Med. Chem. 2007, 50, 2589; (d) Rami,
H. K.; Gunthorpe, M. J. Drug Discov. Today: Ther.
Strategies 2004, 1, 97.
Gavva, N.; Han, N.; Kelly, M. G.; Kincaid, J.;
Klionsky, L.; Liu, Q.; Ognyanov, V. I.; Tamir, R.;
Wang, X.; Zhu, J.; Norman, M. H.; Treanor, J. J. S. J.
Med. Chem. 2005, 48, 71.
4. (a) Chakrabarti, P. P.; Chen, N.; Doherty, E. M.;
Dominguez, C.; Falsey, J. R.; Fotsh, C. H.; Hulme, C.;
Katon, J.; Nixey, T.; Norman, M. H.; Ognyanov, V. I.;
Pettus, L. H.; Rzasa, R. M.; Stec, M.; Wang, H.-L.; Zhu,
J. WO 04014871 2004; (b) Doherty, E. M.; Bannon, A. W.;
Bo, Y.; Chen, N.; Dominguez, C.; Falsey, J.; Fotsch, C.;
Gavva, N. R.; Katon, J.; Nixey, T.; Ognyanov, V. I.;
Pettus, L.; Rzasa, R.; Stec, M.; Surapaneni, S.; Tamir, R.;
Zhu, J.; Treanor, J. J. S.; Norman, M. H. J. Med. Chem.
2007, 50, 3515.
5. (a) Wang, H.-L.; Katon, J.; Balan, C.; Bannon, A. W.;
Bernard, C.; Doherty, E. M.; Dominguez, C.; Gavva, N.
R.; Gore, V.; Ma, V.; Nishimura, N.; Surapaneni, S.;
Tang, P.; Tamir, R.; Thiel, O.; Treanor, J. J. S.; Norman,
M. H. J. Med. Chem. 2007, 50, 3528; (b) Wang, X.;
Chakrabarti, P. P.; Ognyanov, V. I.; Pettus, L. H.; Tamire,
R.; Tan, H.; Tang, P.; Treanor, J. J. S.; Gavva, N. R.;
Norman, M. H. Bioorg. Med. Chem. Lett. 2007, 17, 6539.
6. Subsequent to our identification of naphthol ureas from
HTS, examples of naphthol and tetrahydronaphthol ureas
as TRPV1 antagonists appeared in the patent literature:
(a) Yura, T.; Mogi, M.; Ikegami, Y.; Masuda, T.;
Kokubo, T.; Urbahns, K.; Lowinger, T. B.; Yoshida, N.;
Freitag, J.; Meier, H.; Wittka-Nopper, R.; Marumo, M.;
Shiroo, M.; Tajimi, M.; Takeshita, K.; Moriwaki, T.;
Tsukimi, Y. WO 014064 2003; (b) Tajimi, M.; Kokubo,
T.; Shiroo, M.; Tsukimi, Y.; Yura, T.; Urbahns, K.;
Yamamoto, N.; Mogi, M.; Fujishima, H.; Masuda, T.;
Yoshida, N.; Moriwaki, T. WO 052846 2004.
8. Compound 3 was prepared as described in Ref. 4a.
9. For comparison, the reported pKa values for 4-methoxy-
pyrimidine and 4-aminomethylpyrimidine are 2.5 and 6.1,
respectively. Brown, D. J.; Short, L. N. J. Chem. Soc.
1953, 331.
10. Tan, H.; Semin, D.; Wacker, M.; Cheetham, J. JALA
2005, 10, 364.
11. The enantiomers were separated by preparative chiral
phase HPLC on a ChiralcelTM AD column; mobile phase
25% EtOH in hexane; flow rate 30 mL/min; (+)-4 was the
first to elute. The isolated antipodes were >99% enantio-
meric purity as determined by chiral analytical LC.
12. In vitro metabolism was examined by incubating com-
pound 4 at a concentration of 10 lM with rat hepatocytes
(1 million cells/mL) for 4 h at 37 ꢁC. Control incubations
in the absence of cells were also carried out. Reactions
were quenched with acetonitrile containing 0.05% formic
acid. The supernatant was analyzed by reverse phase
(YMC ODS-AQ, 4.6 · 250 mm, 5 lm) HPLC-MS/MS
with radiometric detection and ion trap mass spectrometry
using electrospray ionization. Hydrolysis experiments
were conducted with glucoronidase and/or sulfatase to
confirm the presence of glucoronide and/or sulfate
metabolites.
13. Stjernlof, P.; Ennis, M. D.; Hansson, L. O.; Hoffman, R. L.;
Ghazal, N. B.; Sundell, S.; Smith, M. W.; Svensson, K.;
Carlsson, A.; Wikstrom, H. J. Med. Chem. 1995, 38, 2202.
14. Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101.
15. Kawamura, K.; Ohta, T.; Otani, G. Chem. Pharm. Bull.
1990, 38, 2088.
7. For detailed assay conditions see Doherty, E. M.;
Fotsch, C.; Bo, Y.; Chakrabarti, P. P.; Chen, N.;