5174
S. Gobec et al. / Bioorg. Med. Chem. Lett. 15 (2005) 5170–5175
16. Komoto, J.; Yamada, T.; Watanabe, K.; Takusagawa, F.
Biochemistry 2004, 43, 2188.
dues located in the hydrophobic pocket. The carboxyl-
ate oxygen is located in the oxyanion hole formed by
active site Tyr55, His117, and the nicotinamide ring
(Fig. 4).
17. (a) Xu, X. Anti-Cancer Drugs 2002, 13, 127; (b) Gupta, R.
A.; DuBois, R. N. Nat. Rev. Cancer 2001, 1, 11; (c)
Grosch, S.; Tegeder, I.; Niederberger, E.; Brautigam, L.;
Geisslinger, G. FASEB J. 2001, 15, U300; (d) Zhang, X.
P.; Morham, S. G.; Langerbach, R.; Young, D. A. J. Exp.
Med. 1999, 190, 451; (e) Wechter, W. J.; Kantoci, D.;
Murray, E. D.; Quiggle, D. D.; Leipold, D. D.; Gibson, K.
M.; McCracken, J. Cancer Res. 1997, 57, 4316; (f)
Wechter, W. J.; Leipold, D. D.; Murray, E. D.; Quiggle,
D.; McCracken, J. D.; Barrios, R. S.; Greenberg, N. M.
Cancer Res. 2000, 60, 2203; (g) Kasum, C. M.; Blair, C.
K.; Folsom, A. R.; Ross, J. A. Cancer Epidemiol. Biomark.
Prev. 2003, 12, 534.
18. (a) Yamazaki, R.; Kusunoki, N.; Matsuzaki, T.;
Hashimoto, S.; Kawai, S. J. Pharmacol. Exp. Ther.
2002, 302, 18; (b) Liu, J. J.; Wang, J. Y.; Hertervig, E.;
Nilsson, A.; Duan, R. D. Anticancer Res. 2002, 22, 263;
(c) Rodriguez-Burford, C.; Barnes, M. N.; Oelschlager,
D. K.; Myers, R. B.; Talley, L. I.; Partridge, E. E.;
Grizzle, W. E. Clin. Cancer Res. 2002, 8, 2002; (d)
Mohammed, S. I.; Bennett, P. F.; Craig, B. A.;
Glickman, N. W.; Mutsaers, A. J.; Snyder, P. W.;
Widmer, W. R.; DeGortari, A. E.; Bonney, P. L.;
Knapp, D. W. Cancer Res. 2002, 62, 356; (e) Thurnher,
D.; Bakroeva, M.; Schutz, G.; Pelzmann, M.; For-
manek, M.; Knerer, B.; Kornfehl, J. Acta. Oto-Laryngol.
2001, 121, 957; (f) Stack, E.; DuBois, R. N. Gastroen-
terol. Clin. N. Am. 2001, 30, 1001; (g) Shureiqi, I.; Xu,
X. C.; Chen, D. N.; Lotan, R.; Morris, J. S.;
Fischer, S. M.; Lippman, S. M. Cancer Res. 2001, 61,
4879.
We have identified some new, structurally diverse, inhib-
itors of human recombinant AKR1C3. The active com-
pounds presented in this paper are promising lead
compounds for the development of new anticancer
agents. In principle, two different mechanisms of action
are possible for their antitumor activities. Inhibitors of
AKR1C3 are potential agents for treating hormone
dependent forms of cancer, since AKR1C3 catalyzes
the conversion of androstenedione and estrone to their
active metabolites. On the other hand, AKR1C3 inhibi-
tors can also have a cancer chemopreventive role, since
inhibition of AKR1C3 can lead to diversion of prosta-
glandin catabolism toward the generation of J-series
prostanoids and thereby to the activation of PPARc
receptor.
Acknowledgments
This work was supported financially by the Ministry of
Education, Science and Sport of the Republic of Slove-
nia. The authors thank Professor Dr. Roger Pain for
critical reading of the manuscript.
19. Desmond, J. C.; Mountford, J. C.; Drayson, M. T.;
Walker, E. A.; Hewison, M.; Ride, J. P.; Luong, Q. T.;
Hayden, R. E.; Vanin, E. F.; Bunce, C. M. Cancer Res.
2003, 63, 505.
20. Wick, M.; Hurteau, G.; Dessev, C.; Chan, D.; Geraci, M.
W.; Winn, R. A.; Heasley, L. E.; Nemenoff, R. A. Mol.
Pharmacol. 2002, 62, 1207.
References and notes
1. Penning, T. M. Endocr. Rev. 1997, 18, 281.
2. Penning, T. M. Hum. Reprod. Update 2003, 9, 193.
3. Nobel, S.; Abrahamsen, L.; Oppermann, U. Eur. J.
Biochem. 2001, 268, 4113.
4. Mindich, R.; Mo¨ller, G.; Adamski, J. Moll. Cell Endocri-
nol. 2004, 218, 7.
5. Penning, T. M.; Burczynski, M. E.; Jez, J. M.; Lin, H.-K.;
Ma, H.; Moore, M.; Palackal, N.; Ratnam, K. Biochem. J.
2000, 351, 67.
6. Penning, T. M.; Burczynski, M. E.; Jez, J. M.; Lin, H.-K.;
Ma, H.; Moore, M.; Ratnam, K.; Palackal, N. Mol. Cell
Endocr. 2001, 171, 137.
´
21. Dogne, J.-M.; Supuran, C. T.; Pratico, D. J. Med. Chem.
2005, 48, 2251.
22. Assays were carried out in 0.6 mL aliquots of 100 mM
phosphate buffer (pH 6.5) containing 0.9% DMF as co-
solvent. The concentration of substrate was 5 lM, the
coenzyme 200 lM, and the enzyme 0.5 lM. Concentra-
tions of inhibitors were from 0.01 to 100 lM.
23. Representative example of IC50 determination for dic-
lofenac. Initial velocities of enzymatic reactions in the
absence (v0) or presence of inhibitor (vi) were calculated.
Percentage inhibition (% inh.) was given by 100 ꢀ ((vi/
v0) · 100). IC50 values were determined graphically from
a plot of % inh. versus log (inhibitor concn) using
GraphPad Prism Version 4.00 (GraphPad Software,
Inc.).
7. Khanna, M.; Qin, K. N.; Wang, R. W.; Cheng, K. C.
J. Biol. Chem. 1995, 270, 20162.
8. Matsuura, K.; Shiraishi, H.; Hara, A.; Sato, K.; Deyashi-
ki, Y.; Ninomiya, M.; Sakai, S. J. Biochem. (Tokyo) 1998,
124, 940.
9. Poirier, D. Curr. Med. Chem. 2003, 10, 453.
10. Krazeisen, A.; Breitling, R.; Mo¨ller, G.; Adamski, J. Mol.
Cell Endocr. 2001, 171, 151.
11. Usami, N.; Yamamoto, T.; Shintani, S.; Higaki, Y.;
Ishikura, S.; Katagiri, Y.; Hara, A. Biol. Pharm. Bull.
2002, 25, 441.
12. Higaki, Y.; Usami, N.; Shintani, S.; Ishikura, S.; El-
Kabbani, O.; Hara, O. Chem. Biol. Interact. 2003, 143,
503.
13. Bauman, D. R.; Rudnick, S.; Szewczuk, L. M.; Jin, Y.;
Gopishetty, S.; Penning, T. M. Mol. Pharmacol. 2005, 67,
60.
14. Lovering, A. L.; Ride, J. P.; Bunce, C. M.; Desmond, J. C.;
Cummings, S. M.; White, S. A. Cancer Res. 2004, 64, 1802.
15. (a) Penning, T. M.; Talalay, P. Proc. Natl. Acad. Sci.
U.S.A. 1983, 80, 4504; (b) Penning, T. M.; Mukharji, I.;
Barrows, S.; Talalay, P. Biochem. J. 1984, 222, 601.
125
100
75
50
25
0
-8
-6
log conc.
-3
-9
-5
-4
-2
-7