A R T I C L E S
Branca et al.
Scheme 1. General Strategy for the Synthesis of Enantioenriched
Quaternary R-Amino Acids
Figure 1. Tertiary aromatic amides.
intermolecular reaction, a very efficient intramolecular alkylation
reaction was developed.11
In order to improve these results, we thought to use the axial
chirality of tertiary aromatic amides, which present two slow
bond rotations (Figure 1).13 These compounds are generally not
planar and even moderate steric hindrance forces a dihedral
angle of 90° on the Ar-CO bond. Subject to certain constraints
of substitution pattern (A * B), the two perpendicular conform-
ers about the Ar-CO bond are enantiomeric (R1 and R2 achiral)
or diastereomeric (R1 or R2 chiral), and these compounds can
therefore present axial chirality.
Scheme 2. Synthesis of Enantioenriched Quaternary L-Valine
Our strategy was to introduce a tertiary aromatic amide
function onto the starting R-amino acid in order to transfer the
initial central chirality to an axial chirality. Due to the high
rotation barriers of tertiary aromatic amides, the axial chirality
should be retained during the enolization/alkylation step at low
temperature and induce a stereoselective attack by the electro-
phile. The quaternary R-amino acid should be obtained after
deprotection (Scheme 1). In order to protect both the amino
and the acid groups, we chose an oxazolidin-5-one, knowing
that it is easy to synthesize and to cleave.
We have successfully applied this strategy to L-valine and
performed the synthesis of quaternary enantioenriched L-valine
3 in only three steps (Scheme 2).14 We have also proposed an
explanation for the observed stereoselectivity based on DFT
calculations and NMR studies.15 Herein, we report a full article
of our work, including the application of this strategy to other
amino acids.
(9) (a) Kolaczkowski, L.; Barnes, D. M. Org. Lett. 2007, 9, 3029–3032.
(b) Betts, M. J.; Pritchard, R. G.; Schofield, A.; Stoodley, R. J.; Vohra,
S. J. Chem. Soc., Perkin Trans. 1 1999, 1067–1072. (c) Giese, B.;
Wettstein, P.; Sta¨helin, C.; Barbosa, F.; Neuburger, M.; Zehnder, M.;
Wessing, P. Angew. Chem., Int. Ed. 1999, 38, 2586–2587. (d) Bonache,
M. A.; Lopez, P.; Martin-Martinez, M.; Garcia-Lopez, M. T.; Cativiela,
C.; Gonzalez-Muniz, R. Tetrahedron 2006, 62, 130–138. (e) Bonache,
M. A.; Cativiela, C.; Garcia-Lopez, M. T.; Gonzalez-Muniz, R.
Tetrahedron Lett. 2006, 47, 5883–5887.
Results and Discussion
1. Optimization of Reaction Conditions Starting from
L-Valine. We decided to develop our method starting from
L-valine because of the steric hindrance induced by the isopropyl
group and because of the biological interest of R-methylvaline.16
We have chosen oxazolidinones 4 arising from formaldehyde
(R2 ) H) or 5 from acetone (R2 ) Me) and also tested several
aromatic groups. Compounds 4 were synthesized following a
known two-step procedure: initial condensation of L-valine with
an aromatic acyl chloride,17 and then formation of the oxazo-
lidinone ring by heating the resulting compound 6 in toluene
with paraformaldehyde (Scheme 3).18 Unfortunately, we could
not avoid slight deterioration of the enantiomeric excess19
(10) Selected examples: (a) Kawabata, T.; Chen, J.; Suzuki, H.; Fuji, K.
Synthesis 2005, 1368–1377. (b) Kawabata, T.; Kawakami, S.-p.;
Shimada, S.; Fuji, K. Tetrahedron 2003, 59, 965–974. (c) Kawabata,
T.; Kawakami, S.-p.; Fuji, K. Tetrahedron Lett. 2002, 43, 1465–1467.
(d) Kawabata, T.; Suzuki, H.; Nagae, Y.; Fuji, K. Angew. Chem., Int.
Ed. 2000, 39, 2155–2157.
(11) (a) Moriyama, K.; Sakai, H.; Kawabata, T. Org. Lett. 2008, 10, 3883–
3886. (b) Kawabata, T.; Moriyama, K.; Kawakami, S.; Tsubaki, K.
J. Am. Chem. Soc. 2008, 130, 4153–4157. (c) Watanabe, T.; Kawabata,
T. Heterocycles 2008, 76, 1593–1606. (d) Kawabata, T.; Matsuda,
S.; Kawakami, S.; Monguchi, D.; Moriyama, K. J. Am. Chem. Soc.
2006, 128, 15394–15395. (e) Kawabata, T.; Kawakami, S.; Majumdar,
S. J. Am. Chem. Soc. 2003, 125, 13012–13013.
(15) Branca, M.; Alezra, V.; Kouklovsky, C.; Archirel, P. Tetrahedron 2008,
64, 1743–1752.
(12) (a) Carlier, P. R.; Zhao, H.; MacQuarrie-Hunter, S. L.; DeGuzman,
J. C.; Hsu, D. C. J. Am. Chem. Soc. 2006, 128, 15215–15220. (b)
MacQuarrie-Hunter, S. L.; Carlier, P. R. Org. Lett. 2005, 7, 5305–
5308. (c) Carlier, P. R.; Lam, P. C.-H.; DeGuzman, J. C.; Zhao, H.
Tetrahedron: Asymmetry 2005, 16, 2999–3002.
(16) (a) Bellanda, M.; Mammi, S.; Geremia, S.; Demitri, N.; Randaccio,
L.; Broxterman, Q. B.; Kaptein, B.; Pengo, P.; Pasquato, L.; Scrimin,
P. Chem.sEur. J. 2007, 13, 407–416. (b) Toniolo, C.; Crisma, M.;
Formaggio, F.; Peggion, C. Biopolymers 2001, 60, 396–419.
(17) o-Phenyl-benzoyl chloride was synthesized from the corresponding
acid (oxalyl chloride 3 equiv, catalytic DMF, dichloromethane, 0 °C,
1 h, 96%); o-tert-butyl-benzoyl chloride was synthesized by SNAr with
tert-butyllithium onto 2-fluorobenzo¨ıc acid: Gohier, F.; Castanet, A.-
S.; Mortier, J. Org. Lett. 2003, 5, 1919–1922. followed by reflux in
thionyl chloride (75% overall yield).
(13) (a) Betson, M. S.; Clayden, J.; Helliwell, M.; Johnson, P.; Lai, L. W.;
Pink, J. H.; Stimson, C. C.; Vassiliou, N.; Westlund, N.; Yasin, S. A.;
Youssef, L. H. Org. Biomol. Chem. 2006, 4, 424–443. (b) Bragg, R. A.;
Clayden, J.; Morris, G. A.; Pink, J. H. Chem.sEur. J. 2002, 8, 1279–
1289. (c) Ahmed, A.; Bragg, R. A.; Clayden, J.; Lai, L. W.; McCarthy,
C.; Pink, J. H.; Westlund, N.; Yasin, S. A. Tetrahedron 1998, 54,
13277–13294.
(18) Ben-Ishai, D. J. Am. Chem. Soc. 1957, 79, 5736–5738.
(19) All enantiomeric excesses are determined by chiral stationary-phase
HPLC.
(14) Branca, M.; Gori, D.; Guillot, R.; Alezra, V.; Kouklovsky, C. J. Am.
Chem. Soc. 2008, 130, 5864–5865.
9
10712 J. AM. CHEM. SOC. VOL. 131, NO. 30, 2009