2300
Organometallics 2008, 27, 2300–2305
Controlled Synthesis of Novel Aryloxide Polynuclear Aluminum
Species. Study of Their Catalytic Properties in Polymerization
Processes†
Gema Martínez, Sergio Pedrosa, Vanessa Tabernero, Marta E. G. Mosquera,* and
Tomás Cuenca*
Departamento de Química Inorgánica. Facultad de Farmacia, UniVersidad de Alcalá.
28871 Alcalá de Henares, Madrid, Spain
ReceiVed January 31, 2008
The reaction of AlMe3 with 3,5-(CF3)2C6H3OH at room temperature renders the dinuclear [AlMe2(OR)]2
(1) (OR ) 3,5-(CF3)2C6H3O), trinuclear {[AlMe2(OR)]2[AlMe(OR)2]} (2), or tetranuclear {[AlMe2(OR)]2-
[AlMe(OR)2]2} (3) derivative depending on the reaction conditions (solvent and stoichiometry of the
reagents). All compounds have been characterized by elemental analysis and NMR spectroscopy, and
their crystal structures determined by X-ray diffraction methods. Catalytic studies reveal that these
compounds show high activity in ring-opening polymerization of cyclohexene oxide (CHO). The activity
in the catalytic process varies significantly with solvent and temperature conditions.
by a rich structural chemistry; thus aluminum derivatives of a
vast nuclearity range have been described.21–28
Introduction
Aluminum organometallic and coordination compounds gen-
erate great interest due to their key role in many catalytic
reactions.1–5 Since the discovery of MAO,6,7 different alkyla-
luminoxanes have held a vital role as cocatalysts in Ziegler–
Natta polymerization processes.8–14 In addition, aluminum
alkoxide derivatives have proven to be very efficient catalysts
in many polymerization reactions, such as ring-opening
polymerization.15–20 The appeal of aluminum is complemented
In this note we report the synthesis and structural character-
ization of new aluminum aryloxide complexes. A large number
of aluminum aryloxide compounds have been described,29
containing in most cases nonfunctionalized aryl groups. Our
work is focused on the study of new aryloxide derivatives with
functionalized aryl moieties since we are interested in analyzing
the influence of functionality on the compounds’ properties. In
this context, we have studied the reaction between the fluorinated
phenol 3,5-(CF3)2C6H3OH and AlMe3. The outcome of the
reaction depends strongly on the reaction conditions; varying
the solvent, reaction time, and Al:phenol ratio allows the
synthesis of di-, tri-, and tetrametallic derivatives. The behavior
of these aluminum species in polymerization processes is also
described.
† In memory of Juan Antonio Delgado, deceased on July 14, 2007.
* Corresponding authors. Tel: 34918854779. Fax: 34 918854683. E-mail:
tomas.cuenca@uah.es; martaeg.mosquera@uah.es.
(1) Pindur, U.; Lutz, G.; Otto, C. Chem. ReV. 1993, 93, 741–761.
(2) Rodríguez-Delgado, A.; Chen, E. Y. X. J. Am. Chem. Soc. 2005,
127, 961–974.
(3) Brasse, M.; Cámpora, J.; Davies, M.; Teuma, E.; Palma, P.; Álvarez,
E.; Sanz, E.; Reyes, M. L. AdV. Synth. Catal. 2007, 349, 2111–2120.
(4) Shaver, M. P.; Allan, L. E. N.; Gibson, V. C. Organometallics 2007,
26, 2252–2257.
Results and Discussion
Reactions of AlMe3 with 3,5-(CF3)2C6H3OH. Trimethyl
aluminum reacts with 3,5-(CF3)2C6H3OH at room temperature,
(5) Zhao, J.; Song, H. B.; Cui, C. M. Organometallics 2007, 26, 1947–
1954.
(6) Sinn, H.; Kaminsky, W. AdV. Organomet. Chem. 1980, 18, 99–149.
(7) Sinn, H.; Kaminsky, W.; Vollmer, H. J.; Woldt, R. Angew. Chem.,
Int. Ed. Engl. 1980, 19, 390–392.
(18) Chisholm, M. H.; Gallucci, J.; Navarro-Llobet, D.; Zhen, H. S.
Polyhedron 2003, 22, 557–561.
(8) Resconi, L.; Bossi, S.; Abis, L. Macromolecules 1990, 23, 4489–
4491.
(19) Zevaco, T. A.; Sypien, J.; Janssen, A.; Walter, O.; Dinjus, E. Catal.
Today 2006, 115, 151–161.
(9) Galimberti, M.; Destro, M.; Fusco, O.; Piemontesi, F.; Camurati, I.
Macromolecules 1999, 32, 258–263.
(20) Zevaco, T. A.; Sypien, J. K.; Janssen, A.; Walter, O.; Dinjus, E. J.
Organomet. Chem. 2007, 692, 1963–1973.
(21) Healy, M. D.; Mason, M. R.; Gravelle, P. W.; Bott, S. G.; Barron,
A. R. J. Chem. Soc., Dalton Trans. 1993, 441–454.
(22) Harlan, C. J.; Bott, S. G.; Wu, B.; Lenz, R. W.; Barron, A. R.
Chem. Commun. 1997, 2183–2184.
(10) Chen, E. Y. X.; Marks, T. J. Chem. ReV. 2000, 100, 1391–1434.
(11) Zurek, E.; Ziegler, T. Organometallics 2002, 21, 83–92.
(12) van Baar, J. F.; Horton, A. D.; de Kloe, K. P.; Kragtwijk, E.;
Mkoyan, S. G.; Nifant’ev, I. E.; Schut, P. A.; Taidakov, I. V. Organome-
tallics 2003, 22, 2711–2722.
(23) Witt, M.; Roesky, H. W. Curr. Sci. 2000, 78, 410–430.
(24) McMahon, C. N.; Obrey, S. J.; Keys, A.; Bott, S. G.; Barron, A. R.
J. Chem. Soc., Dalton Trans. 2000, 2151–2161.
(25) Hardman, N. J.; Cui, C. M.; Roesky, H. W.; Fink, W. H.; Power,
P. P. Angew. Chem., Int. Ed. 2001, 40, 2172–2174.
(26) Chakraborty, D.; Chen, E. Y. X. Macromolecules 2002, 35, 13–
15.
(13) Stellbrink, J.; Niu, A.; Allgaier, J.; Richter, D.; Koenig, B.;
Hartmann, R.; Coates, G. W.; Fetters, L. J. Macromolecules 2007, 40, 4972–
4981.
(14) Resconi, L.; Chadwick, J. C.; Cavallo, L. In ComprehensiVe
Organometallic Chemsitry III; Mingos, M. P., Crabtree, R. H., Eds.;
Bochmann, M., Vol. 4 Ed.; Elsevier: London, 2006; Chapter 9.
(15) Campbell, J. P.; Gladfelter, W. L. Inorg. Chem. 1997, 36, 4094–
4098.
(27) Carmalt, C. J.; Mileham, J. D.; White, A. J. P.; Williams, D. J.
New J. Chem. 2002, 26, 902–905.
(16) Miyamoto, M.; Saeki, Y.; Maeda, H.; Kimura, Y. J. Polym. Sci.
Polym. Chem. 1999, 37, 435–444.
(28) Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. ReV.
2004, 104, 6147–6176.
(17) Kitayama, T.; Yamaguchi, H.; Kanzawa, T.; Hirano, T. Polym. Bull.
2000, 45, 97–104.
(29) A check with CSD, version 5.29 (November 2007), gave 535
entries.
10.1021/om800086a CCC: $40.75
2008 American Chemical Society
Publication on Web 04/16/2008