change in the emission intensity against the reciprocal of the TBAF
concentration gave a linear fit, characteristic of a 1:1 complexation
from which the association constants is estimated as 2.8 6
104 M21. However, an increase of TBAF concentration beyond 2
equivalents results in a dramatic increase in the fluorescence and
the Benesi–Hildebrand plots beyond 2 equivalents could be fitted
to the binding isotherm of a 1:2 stoichiometry, which gave a
binding constant of 5.1 6 107 M22. At this situation, a gradual
increase in the absorbance at 410 nm with the disappearance of the
shoulder band corresponding to the self-assembly at 460 nm was
observed in the UV/Vis spectra indicating a complete breaking of
the OPV stacks (see ESI{). Thus, with the increase of TBAF
concentration, the 1:1 stoichiometry of the sandwich complex
of India for research fellowships. This is contribution number
RRLT-PPD-192 from RRL, Trivandrum.
Reji Varghese, Subi J. George and Ayyappanpillai Ajayaghosh*
Photosciences and Photonics Division, Regional Research Laboratory,
CSIR, Trivandrum, 695019, India
Notes and references
1 A. El-ghayoury, E. Peeters, A. P. H. J. Schenning and E. W. Meijer,
Chem. Commun., 2000, 1969; A. P. H. J. Schenning, P. Jonkheijm,
E. Peeters and E. W. Meijer, J. Am. Chem. Soc., 2001, 123, 409;
A. P. H. J. Schenning, J. V. Herrikhuyzen, P. Jonkheijm, Z. Chen,
F. Wu¨rthner and E. W. Meijer, J. Am. Chem. Soc., 2002, 124, 10252;
P. Jonkheijm, F. J. M. Hoeben, R. Kleppinger, J. V. Herrikhuyzen,
A. P. H. J. Schenning and E. W. Meijer, J. Am. Chem. Soc., 2003, 125,
15941; P. Jonkheijm, A. Miura, M. Zdanowska, F. J. M. Hoeben,
S. De Feyter, A. P. H. J. Schenning, F. C. De Schryver and E. W. Meijer,
Angew. Chem., Int. Ed., 2004, 43, 74.
gradually changes to
a 1:2 stoichiometry with no inter-
chromophore interactions (Fig. 3(c)), thereby exhibiting a high
quantum yield of emission (Wf 5 0.32).
Time-resolved single photon counting experiments (Fig. 4) of
BU-OPV1 in chloroform showed a single exponential decay with a
lifetime of 1.32 ns (x2 5 1.03) corresponding to the non-assembled
BU-OPV1. In cyclohexane, a multiexponential fit (x2 5 1.11)
corresponding to lifetimes of 0.19 ns (36.89%), 0.67 ns (41.64%)
and a relatively long-lived species (1.96 ns, 21.47%) could be
obtained, indicating the presence of self-assembled species. Upon
addition of 30 equivalents of TBAF to BU-OPV1 the behavior
was best reproduced by a biexponential fit (x2 5 1.1) in which the
major fraction corresponds to a lifetime of 0.66 ns (82.43%) with a
minor contribution of a longer-lived species corresponding to
1.79 ns (17.59%). These observations clearly show that F2 ions
enter into a competitive H-bond interaction with the urea groups,
thereby disrupting the supramolecular stacks of the BU-OPV1 and
thus restoring the strong emission.
2 B. S. Gaylord, S. Wang, A. J. Heeger and G. C. Bazan, J. Am. Chem.
Soc., 2001, 123, 6417; B. Liu, B. S. Gaylord, S. Wang and G. C. Bazan,
J. Am. Chem. Soc., 2003, 125, 6705.
3 A. Ajayaghosh and S. J. George, J. Am. Chem. Soc., 2001, 123, 5148;
A. Ajayaghosh, S. J. George and V. K. Praveen, Angew. Chem., Int. Ed.,
2003, 42, 332; S. J. George, A. Ajayaghosh, A. P. H. J. Schenning,
P. Jonkheijm and E. W. Meijer, Angew. Chem., Int. Ed., 2004, 43,
3422.
4 The urea group is a versatile H-bonding synthon and is known to form
one-dimensional aggregates and gels. For examples, see: G. R. Desiraju,
Angew. Chem., Int. Ed., 1995, 34, 2311; L. S. Shimizu, M. D. Smith,
A. D. Hughes and K. D. Shimizu, Chem. Commun., 2001, 1592;
V. Simic, L. Bouteiller and M. Jaiber, J. Am. Chem. Soc., 2003, 125,
13148; C. Shi, Z. Haugh, S. Kilic, R. M. Enik, E. J. Beckham, A. J. Carr,
R. E. Melendez and A. D. Hamilton, Science, 1999, 286, 1540;
F. S. Schoonbeek, J. H. van Esch, B. Wegewijs, D. B. A. Rep, M. P. de
Haas, T. M. Klapwijk, R. M. Kellogg and B. L. Feringa, Angew.
Chem., Int. Ed., 1999, 38, 1393.
5 E. Fan, S. A. van Arman, S. Kincaid and A. D. Hamilton, J. Am.
Chem. Soc., 1993, 115, 369; T. R. Kelly and M. H. Kim, J. Am. Chem.
Soc., 1994, 116, 7072; H. Xie, S. Yi, X. Yang and S. Wu, New. J. Chem.,
In conclusion, we have demonstrated a novel supramolecular
approach to ‘‘turn off’’ and ‘‘turn on’’ the emission of OPV
self-assemblies, taking advantage of the competitive H-bonding
interaction of halide ions with urea groups. We are currently
exploring the possibilities of using this idea in controlling
the morphology and optical properties of OPV based
nanoarchitectures.
ˆ
1999, 23, 1105; H. Miyaji, S. R. Collinson, I. Prokes and
J. H. R. Tucker, Chem. Commun., 2003, 64; B. H. M. Snellink-Rue¨l,
M. M. G. Antonisse, J. F. J. Engbersen, P. Timmerman and
D. N. Reinhoudt, Eur. J. Org. Chem., 2000, 165; S. K. Kim and
J. Yoon, Chem. Commun., 2002, 770; E. J. Cho, J. W. Moon, S. W. Ko,
J. Y. Lee, S. K. Kim, J. Yoon and K. C. Nam, J. Am. Chem. Soc., 2003,
125, 12376; S. J. Coles, J. G. Frey, P. A. Gale, M. B. Hursthouse,
M. E. Light, K. Navakhum and G. L. Thomas, Chem. Commun., 2003,
568; G. Xu and M. A. Taar, Chem. Commun., 2004, 1050.
This work is supported by the Department of Science and
Technology (DST), Government of India, New Delhi (SF/C6/99-
2000 and SR/S5/OC-31/2003). R. V. and S. J. G. thank the
Council of Scientific and Industrial Research (CSIR), Government
6 R. Martinez-Manez and F. Sancenon, Chem. Rev., 2003, 103, 4419;
C. Suksai and T. Tuntulani, Chem. Soc. Rev., 2003, 32, 192.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 593–595 | 595