Ster eod iver gen t P r ocess for th e Syn th esis of th e
Deca h yd r oqu in olin e Typ e of Den d r oba tid Alk a loid s
Naoki Toyooka,* Maiko Okumura, and Hideo Nemoto*
Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630,
Toyama 930-0194, J apan
toyooka@ms.toyama-mpu.ac.jp
Received May 13, 2002
A flexible and stereodivergent synthesis of the cis- and trans-fused 2,5-disubstituted octahydro-
quinolinone ring systems bearing all four stereogenic centers for the synthesis of the decahydro-
quinoline type of dendrobatid alkaloids has been achieved. The strategy involves stereoselective
and stereodivergent construction of 2,3,6-trisubstituted piperidine ring systems using the Michael
type of conjugate addition reaction to the enaminoesters 1 and 3, the intramolecular aldol type of
cyclization reaction of keto aldehydes 11 and 12, and ring-closing metathesis of 21 as key steps.
In tr od u ction
The neotropical dart poison frogs contain a remarkable
diversity of alkaloids, and the 2,5-disubstituted decahy-
droquinolines represent one of the major classes of these
amphibian alkaloids.1 Isolation of these alkaloids from
some ants strengthens a dietary hypothesis for the origin
of the above alkaloids that have been detected in extracts
of frog skin.2 In addition, these alkaloids contain both
cis and trans ring fusions, which have been identified as
well as diastereomers at C-2 and C-5 positions (Figure
1).
The structural diversity and pharmacological activity
associated with this class of alkaloids have stimulated
synthetic activity in numerous groups.3 However, the
route which can be applicable to the synthesis of both
cis- and trans-fused ring systems has been reported only
to a small extent.4 Moreover, no methodology for the
F IGURE 1.
(1) (a) Daly, J . W.; Garraffo, H. M.; Spande, T. F. In Alkaloids:
Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon
Press: New York, 1999; Vol. 13, pp 1-161. (b) Daly, J . W. In The
Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1998; Vol.
50, pp 141-169.
divergent synthesis of the 2,8a-cis- and -trans-substituted
ring systems has been reported to date.
Here, we wish to describe the flexible and stereodiver-
gent route to the octahydroquinolinone ring core, which
contains all four stereogenic centers of target alkaloids.
The basic strategy we used involves three key reactions
(Figure 2).
The first key step is the highly stereoselective and
stereodivergent construction of a 2,3,6-trisubstituted
piperidine ring system using the Michael type of conju-
gate addition reaction of the cyclic enaminoesters (steps
A and B).5 The second key step is an intramolecular aldol
type of cyclization reaction6 of the keto aldehydes (steps
C and D) or ring-closing metathesis reaction7 of the vinyl
ketone (step E) derived from the above adducts, respec-
tively. The final key step is the stereoselective installa-
(2) Spande, T. F.; J ain, P.; Garraffo, H. M.; Pannell, L. K.; Yeh, H.
J . C.; Daly, J . W.; Fukumoto, S.; Imamura, K.; Tokuyama, T.; Torres,
J . A.; Snelling, R. R.; J ones, T. H. J . Nat. Prod. 1999, 62, 5-21.
(3) (a) Oppolzer, W.; Flaskamp, E.; Bieber, L. W. Helv. Chim. Acta
2001, 84, 141-145. (b) Akashi, M.; Sato, Y.; Mori, M. J . Org. Chem.
2001, 66, 7873-7874. (c) Riechers, T.; Krebs, H. C.; Wartchow, R.;
Habermehl, G. Eur. J . Org. Chem. 1998, 2641-2646. (d) Toyota, M.;
Asoh, T.; Fukumoto, K. Tetrahedron Lett. 1996, 37, 4401-4404. (e)
Davies, S. G.; Bhalay, G. Tetrahedron: Asymmetry 1996, 7, 1595-
1596. (f) Naruse, M.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 1994,
35, 9213-9216. (g) Naruse, M.; Aoyagi, S.; Kibayashi, C. J . Chem. Soc.,
Perkin Trans. 1 1996, 1113-1124. (h) Murahashi, S.; Sasao, S.; Saito,
E.; Naota, E. J . Org. Chem. 1992, 57, 2521-2523. (i) Murahashi, S.;
Sasao, S.; Saito, E.; Naota, E. Tetrahedron 1993, 49, 8805-8826 and
references therein.
(4) Comins’, Schultz’s, and Kunz’s approach could be applicable to
the divergent synthesis of cis- and trans-fused decahydroquinoline ring
systems. See: (a) Comins, D. L.; Dehghani, A. J . Chem. Soc., Chem.
Commun. 1993, 1838-1839. (b) Comins, D. L.; Dehghani, A. J . Org.
Chem. 1995, 60, 794-795. (c) Schultz, A. G.; McCloskey, P. J .; Court,
J . J . J . Am. Chem. Soc. 1987, 109, 6493-6502. (d) McCloskey, P. J .;
Schultz, A. G. J . Org. Chem. 1988, 53, 1380-1383. (e) Weymann, M.;
Schultz-Kukula, M.; Kunz, H. Tetrahedron Lett. 1998, 39, 7835-7838.
(5) (a) Momose, T.; Toyooka, N. J . Org. Chem. 1994, 59, 943-945.
(b) Toyooka, N.; Tanaka, K.; Momose, T.; Daly, J . W.; Garraffo, H. M.
Tetrahedron 1997, 53, 9553-9574. (c) Toyooka, N.; Fukutome, A.;
Nemoto, H.; Daly, J . W.; Spande, T. F.; Garraffo, H. M.; Kaneko, T.
Org. Lett. 2002, 4, 1715-1717.
10.1021/jo025929b CCC: $22.00 © 2002 American Chemical Society
Published on Web 07/20/2002
6078
J . Org. Chem. 2002, 67, 6078-6081