Synthesis of the C1−C28 Portion of the Altohyrtins
A R T I C L E S
Scheme 1
ing of organic synthesis and, in particular, to the unique synthetic
challenges presented by the altohyrtin skeleton, but they have
not provided significantly more altohyrtin than has been isolated
from the natural sourcesnone of the previous syntheses has
provided more than 4 mg of final product. It is our goal to
develop a total synthesis that is sufficiently efficient that we
can prepare multigram quantities of altohyrtin C (spongistatin
2).
improvement if we are to prepare gram quantities of altohyrtins.
In this and the following Article, we report a second-generation
synthesis of the C1-C28 segment that has yielded almost 10
grams of the intermediate and the incorporation of this building
block in a total synthesis of altohyrtin C (spongistatin 2).
One of the problems in our first-generation synthesis was
the long linear synthesis of compound 3, representing C1-C15.
Furthermore, nine of these 33 steps, proceeding in only 41%
overall yield, were required to add C14 and C15 and install the
methylene group at C13. Thus, one goal of our second-
generation synthesis was to develop a convergent synthesis of
the A/B spiroketal moiety, and another was to develop a better
way of incorporating C13-C15. Indeed, we had already
developed such a convergent route for the synthesis of the C/D
spiroketal 4 (see Scheme 1). Another goal that we had in mind
in developing a revised synthesis of C1-C28 was to make the
synthetic approaches to the A/B and C/D spiroketal subunits as
similar as possible, so that we can start with identical or
enantiomeric starting materials and minimize the number of
chemically different operations. To meet these objectives, we
identified compound 6 as our target and envisioned this
spiroketal precursor as arising from unification of aldehyde 7
with methyl ketone 8 in a manner similar to that used for the
synthesis of the C/D spiroketal in our first-generation synthesis.
We have previously reported first-generation syntheses of the
C1-C28 and C29-C44 building blocks (Scheme 1).15,16 Our
synthesis of the C1-C28 segment 5 required 60 total steps, a
longest linear sequence of 36 steps, and gave an overall yield
for this sequence of 0.86% (somewhat higher if one includes
recycling at several stages). The synthesis permitted us to
prepare several hundred milligrams of 5, but needed significant
(11) (a) Smith, A. B., III; Doughty, V. A.; Lin, Q.; Zhuang, L.; McBriar, M.
D.; Boldi, A. M.; Moser, W. H.; Murase, N.; Nakayama, K.; Sobukawa,
M. Angew. Chem., Int. Ed. 2001, 40, 191. (b) Smith, A. B., III; Lin, Q.;
Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Brook, C. S.;
Murase, N.; Nakayama, K. Angew. Chem., Int. Ed. 2001, 40, 196. (c) Smith,
A. B., III; Doughty, V. A.; Sfouggatakis, C.; Bennett, C. S.; Koyanagi, J.;
Takeuchi, M. Org. Lett. 2002, 4, 783.
(12) (a) Paterson, I.; Oballa, R. M.; Norcross, R. D. Tetrahedron Lett. 1996,
37, 8581. (b) Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron Lett.
1996, 37, 8585. (c) Paterson, I.; Keown, L. E. Tetrahedron Lett. 1997, 38,
5727. (d) Paterson, I.; Oballa, R. M. Tetrahedron Lett. 1997, 38, 8241. (e)
Paterson, I.; Wallace, D. J.; Gibson, K. R. Tetrahedron Lett. 1997, 38,
8911. (f) Paterson, I.; Chen, D. Y.-K.; Coster, M. J.; Acen˜a, J. L.; Bach,
J.; Gibson, K. R.; Keown, L. E.; Oballa, R. M.; Trieselmann, T.; Wallace,
D. J.; Hodgson, A. P.; Norcross, R. D. Angew. Chem., Int. Ed. 2001, 40,
4055-4060.
(13) (a) Crimmins, M. T.; Washburn, D. G. Tetrahedron Lett. 1998, 39, 7487.
(b) Crimmins, M. T.; Katz, J. D.; McAtee, L. C.; Tabet, E. A.; Kirincich,
S. J. Org. Lett. 2001, 3, 949-952. (c) Crimmins, M. T.; Katz, J. D. Org.
Lett. 2000, 2, 957-960. (d) Crimmins, M. T.; Katz, J. D.; Washburn, D.
G.; Allwein, S. P.; McAtee, L. F. J. Am. Chem. Soc. 2002, 124, 5661-
5663.
(14) For leading references to synthetic approaches from other laboratories, see
the list in ref 16, plus the following: (a) Zuev, D.; Paquette, L. A. Org.
Lett. 2000, 2, 679-682. (b) Terauchi, T.; Nakata, M. Tetrahedron Lett.
1998, 39, 3795-3798. (c) Lemaire-Audoire, S.; Vogel, P. Tetrahedron Lett.
1998, 39, 1345-1348. (d) Lemaire-Audoire, S.; Vogel, P. J. Org. Chem.
2000, 65, 3346-3356. (e) Zemribo, R.; Mead, K. T. Tetrahedron Lett.
1998, 39, 3895-3898. (f) Fernandez-Megia, E.; Gourlaouen, N.; Ley, S.
V.; Rowlands, G. J. Synlett 1998, 991-994. (g) Micalizio, G. C.; Pinchuk,
A. N.; Roush, W. R. J. Org. Chem. 2000, 65, 8730-8736. (h) Anderson,
J. C.; McDermott, B. P. Tetrahedron Lett. 1999, 40, 7135-7138. (i) Samadi,
M.; Munoz-Letelier, C.; Poigny, S.; Guyot, M. Tetrahedron Lett. 2000,
41, 3349-3353. (j) Terauchi, T.; Terauchi, T.; Sato, I.; Tsukada, T.; Kanoh,
N.; Nakata, M. Tetrahedron Lett. 2000, 41, 2649-2653. (k) Kary, P. D.;
Roberts, S. M. Tetrahedron: Asymmetry 1999, 10, 217-219. (l) Kim, H.;
Hoffmann, M. R. Eur. J. Org. Chem. 2000, 2195-2201. (m) Barrett, A.
G. M.; Braddock, D. C.; de Koning, P. D.; White, A. J. P.; Williams, D.
J. J. Org. Chem. 2000, 65, 375-380.
The improved route to intermediate 7 starts with (S)-malic
acid (Scheme 2) and utilizes a sequence similar to that
9
J. AM. CHEM. SOC. VOL. 125, NO. 42, 2003 12837