2834
R. W. Bates, K. Palani / Tetrahedron Letters 49 (2008) 2832–2834
B. D.; Bui, C. T.; Pham, H. T. T.; Simpson, G. W. Aust. J. Chem.
The final critical intramolecular Michael addition was
1998, 51, 9.
carried out under the conditions described by Banwell:
treatment of 3a with sodium hydride in THF at ꢀ78 °C
(Scheme 4).7 It was gratifying to find that the major prod-
uct of the reaction was the trans-isomer 2a, accompanied
by some of the cis-isomer 2c, in a ratio of 7:3 and which
were separable by column chromatography. A remarkable
concordance of NMR data was observed and served to
assign the stereochemistry (Table 1).14
8. Bartlett, P. A.; Meadows, J. D.; Brown, E. G.; Morimoto, A.;
Jernstedt, K. K. J. Org. Chem. 1982, 47, 4013.
9. Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. J. Chem. Soc., Chem.
Commun. 1981, 465; Bongini, A.; Cardillo, G.; Orena, M.; Porzi, G.;
Sandri, S. J. Org. Chem. 1982, 47, 4626.
10. Brown, H. C.; Brown, C. A. J. Am. Chem. Soc. 1963, 85, 1005.
11. Holmes, C. P.; Bartlett, P. A. J. Org. Chem. 1989, 54, 98; For another
example, see: Knapp, S.; Naughton, A. B. J.; Murai Dahr, T. G.
Tetrahedron Lett. 1992, 33, 1025.
In conclusion, we have shown that the combination of
cross-metathesis and intramolecular Michael addition is a
viable pathway to complex tetrahydropyrans, even to pro-
duce the less stable isomer, and also in the presence of
other alkenes.
12. During BOM protection, some opening of the epoxide to a chloro-
hydrin was noted. This could be converted back to the epoxide by
treatment with powdered NaOH in THF.
13. Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 11360.
14. Compound 2a: 1H NMR (500 MHz, CDCl3) d 7.37–7.28 (5H, m, Ar),
5.67 (1H, dq, J = 15.3, 6.5 Hz, CH3–CH@CH), 5.27 (1H, ddq,
J = 15.3, 8.5, 1.3 Hz, CH3–CH@CH–CH), 4.81 (1H, d, J = 6.9 Hz,
O–CH2–O), 4.68 (1H, d, J = 11.7 Hz, O–CH2–Ar), 4.68 (1H, d,
J = 7.0 Hz, O–CH2–O), 4.54 (1H, d, J = 11.8 Hz, O–CH2–Ar), 4.22–
4.12 (2H, m, CH2–CHb–CH2, @CH–CH–CH2), 3.84 (1H, m, CH2–
CHa–CH2), 3.66 (3H, s, COOCH3), 2.56 (1H, dd, J = 14.8, 8.2 Hz,
CH–CH2–COOMe), 2.44 (1H, dd, J = 14.8, 5.7 Hz, CH–CH2–
COOMe), 2.14 (1H, ddd, J = 13.8, 8.8, 5.0 Hz, CH–CH2–CH), 1.71
(3H, dd, J = 6.5, 1.3 Hz, CH3–CH@CH), 1.68–1.57 (4H, m), 1.47
(1H, ddd, J = 13.6, 8.8, 4.9 Hz, CH–CH2–CH), 1.39–1.31 (2H, m);
13C NMR (75 MHz, CDCl3) d 171.8, 138.2, 130.7, 130.0, 128.3, 127.9,
127.5, 91.6, 74.5, 69.4, 68.4, 67.6, 51.6, 39.5, 38.4, 30.0, 29.5, 18.4,
Acknowledgements
We thank the Singapore Ministry of Education Aca-
demic Research Fund Tier 2 (Grant T206B1220RS) and
Nanyang Technological University for generous support
of this work.
References and notes
26
17.7; ½aꢁD 42:6 (c 0.6, MeOH) HRMS Found 241.1434 (M+-BOM,
1. Biard, J.-F.; Roussakis, C.; Kornprobst, J.-M.; Gouiffes-Barbin, D.;
Verbist, J.-F.; Cotelle, P.; Foster, M. P.; Ireland, C. M.; Debitus, C.
J. Nat. Prod. 1994, 57, 1336.
2. Rizvi, S. A.; Tereshko, V.; Kossiakoff, A. A.; Kozmin, S. A. J. Am.
Chem. Soc. 2006, 128, 3882.
3. Yadav, J. S.; Chetia, L. Org. Lett. 2007, 9, 4587; Lowe, J. T.; Wrona,
I. E.; Panek, J. S. Org. Lett. 2007, 9, 327; Crimmins, M. T.; DeBaillie,
A. C. J. Am. Chem. Soc. 2006, 128, 4936; Wipf, P.; Hopkins, T. D.
Chem. Commun. 2005, 3421; Statsuk, A. V.; Liu, D.; Kozmin, S. A.
J. Am. Chem. Soc. 2004, 126, 9546.
C13H21O4 requires 241.1434); Compound 2c: 1H NMR (500 MHz,
CDCl3) d 7.35–7.27 (5H, m, Ar), 5.65 (1H, dq, J = 15.3, 6.6 Hz, CH3–
CH@CH), 5.26 (1H, ddq, J = 15.4, 8.6, 1.4 Hz, CH3–CH@CH–CH),
4.79 (1H, d, J = 6.9 Hz, O–CH2–O), 4.66 (1H, d, J = 11.9 Hz, O–
CH2–Ar), 4.65 (1H, d, J = 6.6 Hz, O–CH2–O), 4.50 (1H, d,
J = 11.8 Hz, O–CH2–Ar), 4.23–4.19 (1H, m, @CH–CH–CH2), 3.74–
3.69 (1H, m, CH2–CHb–CH2), 3.69 (3H, s, COOCH3), 3.40–3.34 (1H,
m, CH2–CHa–CH2), 2.53 (1H, dd, J = 14.9, 8.3 Hz, CH–CH2–
COOMe), 2.38 (1H, dd, J = 14.8, 5.2 Hz, CH–CH2–COOMe), 1.88
(1H, ddd, J = 13.6, 8.8, 5.2 Hz, CH–CH2–CH), 1.83–1.80 (1H, m),
1.72 (3H, dd, J = 6.5, 1.5 Hz, CH3–CH@CH), 1.62–1.55 (3H, m), 1.50
(1H, ddd, J = 13.5, 8.9, 4.7 Hz, CH–CH2–CH), 1.27–1.19 (2H, m).
Decoupling experiments revealed that both Ha and Hb of this minor
isomer displayed typical axial–axial coupling constants (10.6 and
11.1 Hz, respectively). 13C NMR (100 MHz, CDCl3) d 172.0, 138.1,
130.7, 130.0, 128.3, 127.9, 127.5, 91.4, 74.6, 74.4, 74.2, 69.3, 51.5, 42.0,
41.6, 31.2 (2C), 23.4, 17.8 HRMS Found 241.1434 (M+-BOM,
´
4. Bauder, C.; Biard, J.-F.; Solladie, G. Org. Biomol. Chem. 2006, 4,
1860.
5. For some bistramide A sub-structure syntheses, see: Gallagher, P. O.;
McErlean, C. S. P.; Jacobs, M. F.; Watters, D. J.; Kitching, W.
Tetrahedron Lett. 2002, 43, 531.
6. Bates, R. W.; Ping, S. Tetrahedron 2007, 63, 4497; Bressy, C.; Florent,
A.; Cossy, J. Synlett 2006, 3455.
7. Banwell, M. G.; Bui, C. T.; Pham, H. T. T.; Simpson, G. W.
J. Chem. Soc., Perkin Trans. 1 1996, 967; Banwell, M. G.; Bissett,
C
13H21O4 requires 241.1434).