RESEARCH
| REPORT
compatible with the biological and mineral
impurities present in three different soil types.
Although the exact composition of environ-
mentally relevant contaminated soils might
differ from our samples (39, 41, 42), we never-
theless believe that these positive preliminary
results using a variety of soil samples sup-
port the feasibility of this approach. A much
lower lindane-soil ratio of 1 wt % was extracted
with the reaction solvent before the degra-
dation to also afford good yields for both
benzene (76%) and dichloride (76%, Entry 4;
Fig. 4D). This alternative preextraction proto-
col acts as a further proof-of-concept that
might help in the design of larger-scale re-
mediation processes in which undesired soil
contamination with electrolytes and Mn cata-
lysts can be prevented. The large-scale feasi-
bility of an extraction approach has been
demonstrated by the successful treatment of
~70,000 tons of HCH-contaminated soils in
the Netherlands in a full-scale soil-washing
plant, which achieved HCH removal efficiency
of >99.7% (42).
20. R. H. Crabtree, The Organometallic Chemistry of the Transition
Metals (Wiley, ed. 5, 2009).
21. M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 117,
13230–13319 (2017).
22. J. C. Siu, N. Fu, S. Lin, Acc. Chem. Res. 53, 547–560
(2020).
23. J. L. Röckl, D. Pollok, R. Franke, S. R. Waldvogel, Acc. Chem. Res.
53, 45–61 (2020).
24. A. Wiebe et al., Angew. Chem. Int. Ed. 57, 5594–5619
(2018).
25. N. Fu, G. S. Sauer, S. Lin, J. Am. Chem. Soc. 139, 15548–15553
(2017).
26. Y. Yuan et al., iScience 12, 293–303 (2019).
27. Y. Mo et al., Science 368, 1352–1357 (2020).
28. M. F. Hartmer, S. R. Waldvogel, Chem. Commun. 51,
16346–16348 (2015).
29. D. Pollok, S. R. Waldvogel, Chem. Sci. 11, 12386–12400 (2020).
30. J. Casanova, L. Eberson, “Electrochemistry of the carbon–
halogen bond,” in The Chemistry of The Carbon-Halogen Bond:
Part 1, S. Patai, ed. (Wiley, 1973), pp. 979–1047.
31. D. M. Hill, “Safety review of bromine-based electrolytes for
energy storage applications,” Report 1 (2018); http://
32. L. Schulz, S. R. Waldvogel, Synlett 30, 275–286 (2019).
33. S. E. Denmark, W. R. Collins, M. D. Cullen, J. Am. Chem. Soc.
131, 3490–3492 (2009).
34. E. Schneider, Chem. Ber. 84, 911–916 (1951).
35. J. Drabowicz, P. Kiełbasiński, M. Mikołajczyk, “Synthesis of
sulphenyl halides and sulphenamides,” in Sulfenic Acids and
Derivatives, S. Patai, ed. (Wiley, 1990), pp. 221–292.
36. C. Hoffmann, J. Weigert, E. Esche, J.-U. Repke, Chem. Eng. Sci.
214, 115358 (2020).
59. K. M. Redies, T. Fallon, M. Oestreich, Organometallics 33,
3235–3238 (2014).
60. R. Campagne, F. Schäkel, R. Guillot, V. Alezra, C. Kouklovsky,
Org. Lett. 20, 1884–1887 (2018).
61. D. Lexa et al., J. Am. Chem. Soc. 112, 6162–6177 (1990).
62. L. Benati, P. C. Montevecchi, P. Spagnolo, Tetrahedron 49,
5365–5376 (1993).
63. X. Marset, G. Guillena, D. J. Ramón, Chem. Eur. J. 23,
10522–10526 (2017).
64. R. M. Denton, X. Tang, A. Przeslak, Org. Lett. 12, 4678–4681
(2010).
65. A. J. Cresswell, S. T.-C. Eey, S. E. Denmark, Nat. Chem. 7,
146–152 (2015).
66. J. C. Sarie, J. Neufeld, C. G. Daniliuc, R. Gilmour, ACS Catal. 9,
7232–7237 (2019).
67. H. Egami et al., J. Org. Chem. 81, 4020–4030 (2016).
68. V. Wedek, R. Van Lommel, C. G. Daniliuc, F. De Proft,
U. Hennecke, Angew. Chem. Int. Ed. 58, 9239–9243
(2019).
69. E. W. Tan, B. Chan, A. G. Blackman, J. Am. Chem. Soc. 124,
2078–2079 (2002).
70. J. Wei, S. Liang, L. Jiang, Y. Mumtaz, W.-B. Yi, J. Org. Chem.
85, 977–984 (2020).
71. L. Benati, L. Capella, P. C. Montevecchi, P. Spagnolo,
Tetrahedron 50, 12395–12406 (1994).
72. P. Sanllehí et al., Chem. Commun. 53, 5441–5444
(2017).
73. J. M. Lopchuk et al., J. Am. Chem. Soc. 139, 3209–3226
(2017).
74. K. Yuan, J.-F. Soulé, V. Dorcet, H. Doucet, ACS Catal. 6,
8121–8126 (2016).
75. J. C. Siu, J. B. Parry, S. Lin, J. Am. Chem. Soc. 141, 2825–2831
(2019).
76. R. L. Nyland II, Y. Xiao, P. Liu, C. L. Freel Meyers, J. Am. Chem.
Soc. 131, 17734–17735 (2009).
77. K. Yasui, K. Fugami, S. Tanaka, Y. Tamaru, J. Org. Chem. 60,
1365–1380 (1995).
Collectively, these preliminary results serve
as a proof-of-principle for the direct reme-
diation of lindane-contaminated soils using
e-shuttle methodology.
37. Y. Liang, F. Lin, Y. Adeli, R. Jin, N. Jiao, Angew. Chem. Int. Ed.
58, 4566–4570 (2019).
38. B. Huang, A. A. Isse, C. Durante, C. Wei, A. Gennaro,
Electrochim. Acta 70, 50–61 (2012).
39. J. Vijgen, B. de Borst, R. Weber, T. Stobiecki, M. Forter, Environ.
Pollut. 248, 696–705 (2019).
40. P. Bhatt, M. S. Kumar, T. Chakrabarti, Crit. Rev. Environ. Sci.
Technol. 39, 655–695 (2009).
78. D. Song, S. Cho, Y. Han, Y. You, W. Nam, Org. Lett. 15,
3582–3585 (2013).
79. Y.-Y. Ren, X. Zheng, X. Zhang, Synlett 29, 1028–1032
REFERENCES AND NOTES
1. K. L. Kirk, “Persistent polyhalogenated compounds:
biochemistry, toxicology, medical applications, and associated
environmental issues,” in Biochemistry of the Elemental
Halogens and Inorganic Halides (Springer, 1991), pp. 191–238.
2. M. M. Häggblom, I. D. Bossert, “Halogenated organic
compounds: A global perspective,” in Dehalogenation: Microbial
Processes and Environmental Applications (Springer, 2003)
pp. 3–29.
3. S. Patai, The Chemistry of The Carbon–Halogen Bond:
Part 1 (Wiley, 1973).
4. I. Saikia, A. J. Borah, P. Phukan, Chem. Rev. 116, 6837–7042
(2016).
5. M. Eissen, D. Lenoir, Chem. Eur. J. 14, 9830–9841 (2008).
6. A. J. Cresswell, S. T.-C. Eey, S. E. Denmark, Angew. Chem. Int.
Ed. 54, 15642–15682 (2015).
7. W.-J. Chung, C. D. Vanderwal, Angew. Chem. Int. Ed. 55,
4396–4434 (2016).
8. B. N. Bhawal, B. Morandi, ACS Catal. 6, 7528–7535 (2016).
9. X. Fang, P. Yu, B. Morandi, Science 351, 832–836 (2016).
10. X. Fang, B. Cacherat, B. Morandi, Nat. Chem. 9, 1105–1109
(2017).
11. S. K. Murphy, J.-W. Park, F. A. Cruz, V. M. Dong, Science 347,
56–60 (2015).
12. D. A. Petrone et al., J. Am. Chem. Soc. 139, 3546–3557
(2017).
13. W. Chen, J. C. L. Walker, M. Oestreich, J. Am. Chem. Soc. 141,
1135–1140 (2019).
14. P. Yu, A. Bismuto, B. Morandi, Angew. Chem. Int. Ed. 59,
2904–2910 (2020).
15. B. N. Bhawal, B. Morandi, Angew. Chem. Int. Ed. 58,
10074–10103 (2019).
16. M. Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem. Int. Ed.
43, 3368–3398 (2004).
17. K. Sakai, K. Sugimoto, S. Shigeizumi, K. Kondo, Tetrahedron
Lett. 35, 737–740 (1994).
18. M. L. Ho, A. B. Flynn, W. W. Ogilvie, J. Org. Chem. 72, 977–983
(2007).
19. G. W. Gribble, Acc. Chem. Res. 31, 141–152 (1998).
(2018).
41. K. Walker, D. A. Vallero, R. G. Lewis, Environ. Sci. Technol. 33,
4373–4378 (1999).
ACKNOWLEDGMENTS
We thank M. Zesiger, the NMR service, the Molecular and
Biomolecular Analysis Service (MoBiAS), and ETH Zürich for
technical assistance; SusInnoScience (JGU Mainz) for support;
S. Makai for assistance with gas chromatography–mass
42. M. Vega, D. Romano, E. Uotila, “Lindane (persistent organic
pollutant) in the EU” [Directorate General for Internal Policies.
Policy Department C: Citizens’ Rights and Constitutional
Affairs. Petitions (PETI) PE 571.398, 2016].
43. S. Rondinini, A. Vertova, “Electroreduction of halogenated
organic compounds,” in Electrochemistry for the Environment,
C. Comninellis, G. Chen, ed. (Springer, 2010), pp. 279–306.
44. J. P. Merz, B. C. Gamoke, M. P. Foley, K. Raghavachari,
D. G. Peters, J. Electroanal. Chem. 660, 121–126 (2011).
45. E. T. Martin, C. M. McGuire, M. S. Mubarak, D. G. Peters,
Chem. Rev. 116, 15198–15234 (2016).
46. E. Morillo, J. Villaverde, Sci. Total Environ. 586, 576–597
(2017).
47. G. R. Fulmer et al., Organometallics 29, 2176–2179
(2010).
48. J. Liu, Q. Ren, X. Zhang, H. Gong, Angew. Chem. Int. Ed. 55,
15544–15548 (2016).
49. A. K. Macharla, R. C. Nappunni, N. Nama, Tetrahedron Lett. 53,
1401–1405 (2012).
50. S. Lethu, S. Matsuoka, M. Murata, Org. Lett. 16, 844–847
(2014).
51. J. Long et al., Synlett 30, 181–184 (2019).
52. G. W. Kabalka, K. Yang, N. K. Reddy, C. Narayana, Synth. Commun.
28, 925–929 (1998).
53. K. Yubata, H. Matsubara, Tetrahedron Lett. 60, 1001–1004
(2019).
54. X. Xia, P. H. Toy, Beilstein J. Org. Chem. 10, 1397–1405
(2014).
55. W. Chen et al., Chem. Eur. J. 22, 9546–9550 (2016).
56. A. Chassepot et al., Chem. Mater. 24, 930–937 (2012).
57. N. S. Martins, E. E. Alberto, New J. Chem. 42, 161–167 (2018).
58. W. E. Billups et al., J. Org. Chem. 67, 4436–4440
(2002).
spectrometry headspace analysis and helpful discussions; E. Falk
for reproducing one of the lindane-soil experiments; S. Makai,
E. Falk, B. Bhawal, and T. Delcaillau for sharing chemicals; and the
whole Morandi group for critical proofreading of this manuscript.
Funding: This project received funding from the European
Research Council under the European Union's Horizon 2020
research and innovation program (Shuttle Cat, Project ID: 757608)
and the ETH Zürich. X.D. acknowledges the Marie Skłodowska-Curie
Action (HaloCat, Project ID: 886102) for a postdoctoral fellowship.
J.L.R. is a recipient of a DFG fellowship through the Excellence
Initiative by the Graduate School Materials Science in Mainz
(GSC 266). Author contributions: B.M. and X.D. conceived the
project. X.D. and J.L.R. designed and performed all the synthetic
studies. S.W. and B.M. supervised the research. All authors
contributed to the writing and editing of the manuscript.
Competing interests: The authors declare no competing interests.
Data and materials availability: All experimental data are
available in the main text or the supplementary materials.
SUPPLEMENTARY MATERIALS
Materials and Methods
Figs. S1 to S41
Tables S1 to S16
NMR Spectra
References (47−79)
16 October 2020; accepted 30 December 2020
10.1126/science.abf2974
Dong et al., Science 371, 507–514 (2021)
29 January 2021
7 of 7