2166
Organometallics 2008, 27, 2166–2168
Neutral Bimetallic Nickel(II) Phenoxyiminato Catalysts for Highly
Branched Polyethylenes and Ethylene-Norbornene
Copolymerizations
Brandon A. Rodriguez, Massimiliano Delferro, and Tobin J. Marks*
Department of Chemistry, Northwestern UniVersity, EVanston, Illinois 60208-3113
ReceiVed March 6, 2008
as ∼3.1 Å,5 and initial observations on ethylene polymerization
Summary: The synthesis and characterization of noVel bimetal-
lic, neutrally charged dinickel 2,7-diimino-1,8-dioxynaphthalene
polymerization catalysts is reported. Ethylene polymerizations
as well as ethylene-co-norbornene copolymerizations display
increased catalytic actiVity, methyl branch formation, and
comonomer enchainment selectiVity Versus the monometallic
analogues. Furthermore, these systems turn oVer in the absence
of cocatalyst under mild conditions.
and copolymerization characteristics. It will be seen that these
catalysts exhibit non-negligible cooperativity effectssthe first
reported for a group 10 metalsmanifested in enhanced poly-
merization activity, enhanced methyl chain branching, and
enhanced comonomer incorporation under mild reaction condi-
tions and not requiring a cocatalyst.6
The remarkable enchainment cooperativity effects displayed
by single-site group 4 bimetallic olefin polymerization catalysts
include significantly enhanced activity, chain branching, and
comonomer enchainment selectivity.1 Moreover, these effects
roughly scale inversely with the intermetallic distance and are
evident in both constrained geometry1 and aryloxyiminato2
group 4 catalysts (e.g., Ti2, FI2-Zr2, respectively). Since studies
to date have focused exclusively on group 4 metals, the question
arises as to whether such cooperativity effects are limited to
early transition metals or might be more pervasive. To explore
this issue, we focused on Ni(II) complexes, which are active
olefin polymerization catalysts,3 as exemplified by the Ni
phenoxyiminates of Grubbs, which afford LDPEs having
moderate molecular weights and 10-55 branches/1000 C
atoms.4 This general ligand architecture confers distinctive
electronic, steric, and catalytic characteristics on the metal
center, and we report here the synthesis of binuclear 2,7-diimino-
1,8-dioxynaphthalene Ni(II) catalysts FI2-Ni2-A and FI2-Ni2-
B, in which rigid ligation enforces Ni · · · Ni distances as small
* Corresponding author. E-mail: t-marks@nortwestern.edu.
(1) (a) Review: Li, H.; Marks, T. J. Proc. Nat. Acad. Sci. 2006, 103,
15295–15302, and references therein. (b) Li, H.; Stern, C. L.; Marks, T. J.
Macromolecules 2005, 38, 9015–9027. (c) Li, H.; Li, L.; Schwartz, D. J.;
Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 14756–14768. (d)
Li, H.; Li, L.; Marks, T. J. Angew. Chem., Int. Ed. 2004, 43, 4937–4940.
(e) Guo, N.; Li, L.; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 6542–6543.
(2) Salata, M. R.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 12–13.
(3) (a) Domski, G. J.; Rose, J. M.; Coates, G. W.; Bolig, A. D.;
Brookhart, M. Prog. Polym. Sci. 2007, 32, 30–92. (b) McCord, E. F.;
McLain, S. J.; Nelson, L. T. J.; Ittel, S. D.; Tempel, D.; Killian, C. M.;
Johnson, L. K.; Brookhart, M. Macromolecules 2007, 40 (3), 410420. (c)
Zhang, L.; Brookhart, M.; White, P. S. Organometallics 2006, 25 (8), 1868–
1874. (d) Jenkins, J. C.; Brookhart, M. J. J. Am. Chem. Soc. 2004, 126,
5827–5842. (e) Gibson, V. C.; Spitzmesser, S. K. Chem. ReV. 2003, 103,
283–316. (f) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. ReV. 2000,
100, 1169–1203. (g) Desjardins, S. Y.; Cavell, K. J.; Hoare, J. L.; Skelton,
B. W.; Sobolev, A. N.; White, A. W.; Keim, W. J. Organomet. Chem.
1997, 544, 163–174. (h) Huang, Y.; Tang, G.; Jin, G.; Jin, G. Organome-
tallics 2008, 27 (2), 259–269.
2
The sodium salt of ligand FI2-H2 was obtained by treating
2,7-di(2,6-diisopropylphenyl)imino-1,8-dihydroxynaphtha-
lene2 with NaH in THF. The bimetallic catalysts FI2-Ni2-A and
FI2-Ni2-B were prepared as shown in Scheme 1 (for details,
see Supporting Information). The imine protons in the Ni2FI2-A
1H NMR spectrum exhibit a characteristic JPH ≈ 9 Hz,
4
corresponding to PMe3 coordination trans to the ketimine
(5) Ni-Ni ) 3.09 Å in the crystal structure of a Ni2L2(OPMe3)2
thermolysis product (Rodriguez, B. A.; Delferro, M.; Marks, T. J.,
unpublished results).
(6) For binuclear Ni(II) catalysts having less rigid ligation, longer
intermetallic distances, and minimal cooperative polymerization effects, see:
(a) Chen, Q.; Yu, J.; Huang, J. Organometallics 2007, 26, 617–625. (b)
Hu, T.; Tang, L.; Li, X.; Li, Y.; Hu, N. Organometallics 2005, 24, 2628–
2632. (c) Zhang, D.; Jin, G. Organometallics 2003, 22, 2851–2854. (d)
U.S. Patent 0270811, 2006.
(4) (a) Waltman, A.; Younkin, T.; Grubbs, R. H. Organometallics 2004,
23, 5121–5123. (b) Younkin, T. R.; Connor, E. F.; Henderson, J. I.;
Friedrich, S. K.; Grubbs, R. H.; Bansleben, D. A. Science 2000, 287, 460–
462. (d) Wang, C.; Friedrich, S. K.; Younkin, T. R.; Li, R. T.; Grubbs,
R. H.; Bansleben, D. A.; Day, M. W. Organometallics 1998, 17, 3149–
3151.
10.1021/om800208f CCC: $40.75
2008 American Chemical Society
Publication on Web 04/24/2008