CHART 1
A Con cise F or m a l Syn th esis of Alk a loid
Cr yp tota ck ien e a n d Su bstitu ted
6H-In d olo[2,3-b]qu in olin es
G. S. M. Sundaram† C. Venkatesh† U. K. Syam Kumar†
H. Ila*,† H. J unjappa‡
Department of Chemistry, Indian Institute of Technology,
Kanpur-208016, India, and Bio Organics and Applied
Materials Pvt. Ltd., No. B-64/ 1, Peenya Industrial Area,
Peenya, Bangalore-560058, India
indolo[2,3-b]quinolines7-9 (precursor to cryptotackiene)
and 6H-indolo[2,3-b][1,6]naphthyridines.10 A few synthe-
ses of cryptotackiene have been recently reported.6a,11,12
Thus, Molina and co-workers have described two syn-
theses of cryptotackiene involving eight steps, based on
sequential construction of both pyridine and indole rings
via aza-Wittig electrocyclic process as the key step for
the formation of the appropriate 3-arylquinoline precur-
sors.11 Timari and co-workers have developed an alterna-
tive synthesis of cryptotackiene in which the key 3-(2-
aminophenyl)-N-methyl-2-quinolone intermediate is ob-
tained by a palladium-catalyzed cross-coupling reaction
of the 3-bromo-2-quinolone derivative with (2-N-pivaloyl-
aminophenyl)boronic acid.12 Recently, Wang et al. have
reported biradical-mediated thermolysis of N-[2-(1-alky-
nyl)phenyl]-N′-phenylcarbodiimides leading to the cor-
responding 6H-indolo[2,3-b]quinoline8 and its 11-alkyl/
aryl derivatives which on methylation with dimethyl
sulfate are known to yield cryptotackiene and its 11-
methyl derivative.
During the course of our studies directed toward
synthesis of novel polycyclic aromatic and heteroaromatic
compounds based on R-oxoketene dithioacetals mediated
aromatic and heteroaromatic annulation,13,14 we have
recently reported an efficient two-step method for the
synthesis of a wide range of substituted and annulated
pyrido[2,3-b]indoles (R-carbolines).15 The overall trans-
formation involves base-induced conjugate displacement
on R-oxoketene dithioacetals by 1-substituted-2-oxindole
hila@iitk.ac.in
Received May 7, 2004
Abstr a ct: A five-step formal synthesis of alkaloid crypto-
tackiene and its 2-formyl, 11-methyl/phenyl derivatives
involving conjugate addition of enolate anion from cyclohex-
anone (or 4-methylcyclohexanone) to bis[(methylsulfanyl)-
methylene]-2-oxindole followed by heterocyclization in the
presence of ammonium acetate as the key step has been
developed. The 11-methylsulfanyl group in the initial pre-
cursor can be either desulfurized (Raney Ni) or replaced by
methyl/phenyl groups via nickel-catalyzed cross-coupling
reaction with appropriate Grignard reagents.
The discovery of antitumor activity1 of ellipticine 1 and
9-methoxyellipticine 2 (Chart 1), two naturally occurring
6H-pyrido[4,3-b]carbazole alkaloids,2 has led to an explo-
sion of activities toward synthesis and biological evalu-
ation of these polyheteroaromatic alkaloids and their
derivatives.3 More recently, cryptotackiene 3a , a linear
5-N-methyl-5H-indolo[2,3-b]quinoline alkaloid isolated
from the West African shrub Cryptolepis sanguinolenta,4
has been reported to exhibit strong antiplasmodial activ-
ity.5 Also, a few of the methyl-substituted derivatives of
cryptotackiene such as 3b are found to display strong
antimicrobial and cytotoxic activities in vitro and sig-
nificant antitumor properties in vivo.6 The interesting
biological activities of ellipticine and indoloquinolines has
stimulated a surge of interest in developing new synthetic
pathways to polyheteroaromatic ring systems such as 6H-
(7) (a) Molina, P.; Alajarin, M.; Vidal, A. J . Chem. Soc., Chem.
Commun. 1990, 1277. (b) Molina, P.; Alajarin, M.; Vidal, A.; Sanchez-
Andrada, P. J . Org. Chem. 1992, 57, 929.
(8) Shi, C.; Zhang, Q.; Wang, K. K. J . Org. Chem. 1999, 64, 925.
(9) (a) Saito, T.; Ohmori, H.; Furuno, E.; Motoki, S. J . Chem. Soc.,
Chem. Commun. 1992, 22. (b) Saito, T.; Ohmori, H.; Ohkubo, T.;
Motoki, S. J . Chem. Soc., Chem. Commun. 1993, 1802.
* To whom correspondence should be addressed. Fax: 91-0512-
2590007, 91-0512-2590260.
† Indian Institute of Technology.
(10) Zhang, Q.; Shi, C.; Zhang, H.-R.; Wang, K. K. J . Org. Chem.
2000, 65, 7977.
‡ Bio Organics and Applied Materials Pvt. Ltd.
(1) Dalton, L. K.; Demerac, S.; Elmes, B. C.; Loder, J . W.; Swan, J .
M.; Teiter, T. Aust. J . Chem. 1967, 20, 2715.
(2) Goodwin, S.; Smith, A. F.; Horning, E. C. J . Am. Chem. Soc. 1959,
81, 1903.
(11) (a) Molina, P.; Fresneda, P. M.; Delgado, S. Synthesis 1999, 326.
(b) Fresneda, P. M.; Molina, P.; Delgado, S. Tetrahedron Lett. 1999,
40, 7275. (c) Alajarin, M.; Molina, P.; Vidal, A. J . Nat. Prod. 1997, 60,
747.
(3) (a) Gribble, G. W. In Alkaloids; Brossi, A., Ed.; Academic Press:
New York, 1990; Vol. 39, p 239. (b) Kansal, V. K.; Potier, P. Tetrahedron
1986, 42, 2389. (c) Ishikura, M.; Hino, A.; Yaginuma, T.; Agata, I.;
Katagiri, N. Tetrahedron 2000, 56, 193. (d) Diaz, M. T.; Cobas, A.;
Guitian, E.; Castedo, L. Synlett 1998, 157. (e) Ergun, Y.; Patir, S.;
Okay, G. J . Heterocycl. Chem. 1998, 35, 1445.
(4) (a) Cimanga, K.; De Bruyne, T.; Pieters, L.; Claeys, M.; Vlietinck,
A. Tetrahedron Lett. 1996, 37, 1703. (b) Sharaf, M. H. M.; Schiff, P.
L., J r.; Tackie, A. N.; Phoebe, C. H., J r.; Martin, G. E. J . Heterocycl.
Chem. 1996, 33, 239. (c) Pousset, J .-L.; Martin, M.-T.; J ossang, A.;
Bodo, B. Phytochemistry 1995, 39, 735.
(5) Cimanga, K.; De Bruyne, T.; Pieters, L.; Claeys, M.; Vlietinck,
A. J . Nat. Prod. 1997, 60, 688.
(6) (a) Peczynska-Czoch, W.; Pognan, F.; Kaczmarek, L.; Boratynski,
J . J . Med. Chem. 1994, 37, 3503. (b) Kaczmarek, L.; Balicki, R.;
Nantka-Namirski, P.; Peczynska-Czoch, W.; Mordarski, M. Arch.
Pharm (Weinheim) 1998, 321, 463.
(12) Timari, G.; Soos, T.; Hajos, G. Synlett 1997, 1067.
(13) Reviews: (a) Ila, H.; J unjappa, H.; Mohanta, P. K. Progress in
Heterocyclic Chemistry; Gribble, G. W., Gilchrist, T. L., Eds.; Perga-
mon: New York, 2001; Vol. 13, Chapter 1, p 1. (b) J unjappa, H.; Ila,
H.; Patro, B.; Rao, Ch. S. J . Ind. Chem. Soc. 1994, 71, 501. (c) Ila, H.;
J unjappa, H.; Barun, O. J . Organomet. Chem. 2001, 64, 34. (d)
J unjappa, H.; Ila, H.; Asokan, C. V. Tetrahedron 1990, 46, 5423.
(14) Recent papers: (a) Panda, K.; Suresh, J . R.; Ila, H.; J unjappa,
H. J . Org. Chem. 2003, 68, 3498 (b) Barun, O.; Nandi, S.; Panda, K.;
Ila, H.; J unjappa, H. J . Org. Chem. 2002, 67, 5398. (c) Mahata, P. K.;
Venkatesh, C.; Syam Kumar, U. K.; Ila, H.; J unjappa, H. J . Org. Chem.
2003, 68, 3966. (d) Mahata, P. K.; Syam Kumar, U. K.; Sriram, V.;
Ila, H.; J unjappa, H. Tetrahedron 2003, 59, 2631. (e) Suresh, J . R.;
Syam Kumar, U. K.; Ila, H.; J unjappa, H. Tetrahedron 2001, 57, 781.
(f) Suresh, J . R.; Barun, O.; Ila, H.; J unjappa, H. Tetrahedron 2000,
56, 8153. (g) Basaveswara Rao, M. V.; Syam Kumar, U. K.; Ila, H.;
J unjappa, H. Tetrahedron 1999, 55, 11563.
10.1021/jo049227t CCC: $27.50 © 2004 American Chemical Society
Published on Web 07/16/2004
5760
J . Org. Chem. 2004, 69, 5760-5762