SAR and 3D-QSAR Studies on Thiadiazolidinones
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 23 7111
(9) Leost, M.; Schultz, C.; Link, A.; Wu, Y. Z.; Biernat, J.; Man-
delkow, E. M.; Bibb, J. A.; Snyder, G. L.; Greengard, P.;
Zaharevitz, D. W.; Gussio, R.; Senderowicz, A. M.; Sausville, E.
A.; Kunick, C.; Meijer, L. Paullones are potent inhibitors of
glycogen synthase kinase-3beta and cyclin-dependent kinase
5/p25. Eur. J. Biochem. 2000, 267, 5983-5994.
(10) Leclerc, S.; Garnier, M.; Hoessel, R.; Marko, D.; Bibb, J. A.;
Snyder, G. L.; Greengard, P.; Biernat, J.; Wu, Y. Z.; Mandelkow,
E. M.; Eisenbrand, G.; Meijer, L. Indirubins inhibit glycogen
synthase kinase-3 beta and CDK5/p25, two protein kinases
involved in abnormal tau phosphorylation in Alzheimer’s dis-
ease. A property common to most cyclin-dependent kinase
inhibitors. J. Biol. Chem. 2001, 276, 251-260.
(11) Smith, D. G.; Buffet, M.; Fenwick, A. E.; Haigh, D.; Ife, R. J.;
Saunders: M.; Slingsby, B. P.; Stacey, R.; Ward, R. W. 3-Anilino-
4-arylmaleimides: Potent and selective inhibitors of Glycogen
synthase kinase-3 (GSK-3). Bioorg. Med. Chem. Lett. 2001, 11,
635-639
(12) Martinez, A.; Alonso, M.; Castro, A.; Perez, C.; Moreno, F. J.
First non-ATP competitive glycogen synthase kinase 3 beta
(GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential
drugs for the treatment of Alzheimer’s disease. J. Med. Chem.
2002, 45, 1292-1299.
(13) Ter Haar, E.; Coll, J. T.; Austen, D. A.; Hsiao, H. M.; Swenson,
L.; Jain, J. Structure of GSK-3beta reveals a primed phospho-
rylation mechanism. Nat. Struct. Biol. 2001, 8, 593-596.
(14) Dajani, R.; Fraser, E.; Roe, S. M.; Young, N.; Good, V.; Dale, T.
C.; Pearl, L. H. Crystal Structure of Glycogen Synthase Kinase
3â: Structural Basis for Phosphate-Primed Substrate Specificity
and Autoinhibition. Cell 2001, 105, 721-732.
(15) Bertrand, J. A.; Thieffine, S.; Vulpetti, A.; Cristiani, C.; Valsa-
sina, B.; Knapp, S.; Kalisz, H. M.; Flocco, M. Structural
characterization of the GSK-3 active site using selective and
nonselective ATP-mimetic inhibitors. J. Mol. Biol. 2003, 33,
393-407.
(16) Bhat, R.; Xue, Y.; Berg, S.; Hellberg, S.; Ormo, M.; Nilsson, Y.;
Radesater, A. C.; Jerning, E.; Markgren, P. O.; Borgegard, T.;
Nylof, M.; Gimenez-Cassina, A.; Hernandez, F.; Lucas, J. J.;
Diaz-Nido, J.; Avila, J. Structural insights and biological effects
of glycogen synthase kinase 3-specific inhibitor AR-A014418. J.
Biol. Chem. 2003, 278, 45937-45945.
(17) Meijer, L.; Skaltsounis, A. L.; Magiatis, P.; Polychronopoulos,
P.; Knockaert, M.; Leost, M.; Ryan, X. P.; Vonica, C. A.;
Brivanlou, A.; Dajani, R.; Crovace, C.; Tarricone, C.; Musacchio,
A.; Roe, S. M.; Pearl, L.; Greengard, P. GSK-3 selective inhibitors
derived from Tyrian purple indirubins. Chem. Biol. 2003, 10,
1255-1266.
(18) Polychronopoulos, P.; Magiatis, P.; Skaltsounis A.; Myriantho-
poulos, V.; Mikros, E.; Tarricone, A.; Musacchio, A.; Roe, S. M.;
Pearl, L.; Leost, M., Greengard, P.; Meijer, L. Structural basis
for the synthesis of indirubins as potent and selective inhibitors
of glycogen synthase kinase-3 and cyclin-dependent kinases. J.
Med. Chem. 2004, 47, 935-946.
(19) Alonso, M.; Mart´ınez, A. GSK-3 inhibitors: discoveries and
developments. Curr. Med. Chem. 2004, 11, 753-761.
(20) Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. Comparative
molecular field analysis (ComFA). 1. Effect of shape on binding
of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110,
5959-5967.
(21) Walker, A. M. A high yielding synthesis of N-alkyl maleimides
using a novel modification of the Mitsunobu reaction. J. Org.
Chem. 1995, 60, 5352-5355.
(22) Zumach, G.; Weiss, W.; Ku¨hle, E. Belgian Pat. 682820. Farben-
fabriken Bayer A. G., June 1966.
(23) MacLauchlin, C.; May, I. H.; Izydore, R. A. Synthesis and
Cytotoxic action of 1-Oxoalkyl and 1,2-Dioxoalkyl-1,2,4-triazo-
lidine-3,5-diones in Murine and Human tissue cultured Cells.
Arch. Pharm. Pharm. Med. Chem. 1999, 332, 225-232.
(24) Hoshitsugu, A.; Matsui, M.; Fujii, A.; Kontani, T.; Koshiyuki,
O.; Koizumi, T.; Shiro. M. Asymmetric Diels-Alder Reaction of
optically active R-(2-exo-Hydroxy-O-bornyl)-sulfinylmaleimides
and its applicattion to optically active 5-functionalized Pyrrolines
via Retro-Diels-Alder Reaction. J. Chem. Soc., Perkin. Trans.
1 1994, 25-39.
(25) Corrie, J. E. T. Thiol-reactive Fluorescent Probes for Protein
Labelling. J. Chem. Soc., Perkin. Trans. 1 1994, 2975-2982.
(26) Janda, K. D.; Ashley, J. A.; Jones, T. M.; McLeod, D. A.;
Schloeder, D. M.; Weinhous. M. I. Inmobilized Catalytic Anti-
bodies in Aqueous and Organic Solvents. J. Am. Chem. Soc.
1990, 112, 8886-8888.
(27) Foye, W. O.; Tovivich, P. N-Glucopyranosyl-5-Aralkylidene-
rhodanines: Synthesis and Antibacterial and Antiviral Activi-
ties. J. Pharm. Sci. 1977, 66, 1607-1611.
(28) Sudo, K.; Matsumoto, Y.; Matsushima, M.; Fujiwara, M.; Konno,
K.; Shimotohno, K.; Shigeta, S.; Yokota, T. Novel Hepatitis C
Virus Protease Inhibitors: Thiazolidine Derivatives. Biochem.
Biophys. Res. Commun. 1997, 238, 643-647.
charge +1 were used as probes to generate the interaction
energies at each lattice point. The default value of 30 kcal.mol-1
was used as the maximum electrostatic and steric energy
cutoff. Additionally, the molecular lipophilicity potential (MLP)
was determined by using the method of Gaillard50 to include
hydrophobic effects into the CoMFA study. Partial least square
(PLS) method was used to identify the relationship between
the inhibitory activity data and the field potential values. Final
non-cross-validated models were chosen on the basis of the best
combinations of mentioned three fields.
All molecular modeling techniques and CoMFA studies
described here were performed on Silicon Graphics workstation
using the Sybyl 6.6 molecular modeling software from Tripos,
Inc. St. Louis, MO.51
CMIP Calculations. Preferential binding sites of TDZDs
on GSK3 protein surface were obtained using the docking
module of the program CMIP.31 The protein (PDB entry 1I09)
was mapped onto a 3D grid of the appropriate size with a 0.5
Å regular spacing (ca. 4000000 grid positions). Binding was
assayed by exhaustive search of 8000 orientations (using
nonredundant Euler angles) for every grid position. When
necessary, flexible molecules were assayed as a family of
standard rotamers. Docked positions were scored using inter-
action energies between the ligand and the protein, which were
evaluated by adding electrostatic and van der Waals contribu-
tions (eq 1).
∆Gint ) ∆Gelect + ∆Gvdw
(1)
The solvent-screened electrostatic interaction was determined
by using the Mehler-Solmajer sigmoidal distance-dependent
dielectric model,52 and the van der Waals component was
evaluated by using a Lennard-Jones expression. Parameters
for protein atoms were obtained from the amber98 force field.53
For the ligand molecules, RESP atomic charges54 determined
at the HF/6-31G(d) level were used in conjunction with van
der Waals parameters taken for related atoms in the amber98
force field.
Acknowledgment. The financial support from
NeuroPharma is kindly acknowledged. Financial sup-
port from the Direccio´n General de Investigacio´n Cien-
t´ıfica y Te´cnica (SAF2002-04282) is acknowledged.
Supporting Information Available: Plots of the best
poses obtained from CMIP calculations for GSK-3â inhibitors.
This material is available free of charge via the Internet at
References
(1) Wauwe, J. V.; Haefner, B. Glycogen synthase kinase-3 as drug
target: From wallflower to center of attention. Drug New
Perspect. 2003, 16, 557-565.
(2) Cohen, P.; Goedert, M. GSK-3 inhibitors: Development and
therapeutic potential. Nat. Rev. Drug Discovery 2004, 3, 479-
487.
(3) Kaidanovich, O.; Eldar-Finkelman, H. The role of glycogen
synthase kinase-3 in insulin resistance and Type 2 diabetes.
Expert Opin. Ther. Targets 2002, 6, 555-561.
(4) Grimes, C. A.; Jope, R. S. The multifaceted roles of glycogen
synthase kinase 3beta in cellular signalling. Prog. Neurobiol.
2001, 65, 391-426.
(5) Hoeflich, K. P.; Luo, J.; Rubie, E. A.; Tsao, M. S.; Jin, O.;
Woodgett, J. Role of glycogen synthase kinase-3 in TNF-alpha-
induced NF-kappaB activation and apoptosis in hepatocytes.
Nature 2000, 406, 86-90.
(6) Martinez, A.; Castro, A.; Dorronsoro, I.; Alonso, M. Glycogen
Synthase Kinase 3 Inhibitors as new promising drugs for
diabetes, neurodegeneration, cancer, and inflamation. Med. Res.
Chem. 2002, 22, 373-384.
(7) Dorronsoro, I.; Castro, A.; Martinez, A. Inhibitors of glycogen
synthase kinase-3: Future therapy for unmet medical needs?.
Expert Opin. Ther. Pat. 2002, 12, 1527-1536
(8) Meijer, L.; Thunnissen, A. M.; White, A. W.; Garnier, M.; Nikolic,
M.; Tsai, L. H.; Walter, J.; Cleverley, K. E.; Salinas, P. C.; Wu,
Y. Z.; Biernat, J.; Mandelkow, E. M.; Kim, S. H.; Pettit, G. R.
Inhibition of cyclin-dependent kinases, GSK-3â and CK1 by
hymenaldisine, a marine sponge constituent. Chem. Biol. 2000,
7, 51-63.20