Journal of the American Chemical Society
Article
L2PdHBr, rather than L2Pd, produces essentially no 1-dodecene
(eq 8).
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and compound characterization data.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
We have established that Cy2NH is not a sufficiently strong
Brønsted base to drive the acid−base equilibrium illustrated in
eq 9 to the right, thereby producing L2Pd from L2PdHBr.23,24
ACKNOWLEDGMENTS
■
Support has been provided by the National Institutes of Health
(National Institute of General Medical Sciences, Grant R01-
GM62871), an American Australian Association Merck
Company Foundation Fellowship (A.C.B.), the Paul E. Gray
(1954) Endowed Fund for the Undergraduate Research
Opportunities Program (A.L.), and the John Reed Fund (A.L.).
REFERENCES
Thus, it appears that, during our palladium-catalyzed
dehydrobromination process, a palladium hydride other than
L2PdHBr undergoes reductive elimination to regenerate Pd(0).
Because each turnover of the catalyst generates [Cy2NH2]Br,
a question arises as to why this ammonium salt does not
protonate L2Pd to form L2PdHBr, thereby deactivating the
palladium catalyst. In fact, during the course of the
dehydrobromination process, we do observe a slow accumu-
lation of L2PdHBr. Fortunately, however, the poor solubility of
[Cy2NH2]Br in dioxane impedes this deleterious protonation
(i.e., [Cy2NH2]Br precipitates faster than it protonates L2Pd).25
Although we previously postulated that the formation of a
relatively stable L2PdHCl (L = PCy3) complex could be the
origin of the low catalyst activity in a Heck reaction of an aryl
chloride,23 we had not fully appreciated the importance of
avoiding the formation of L2PdHBr in developing a mild Pd/
P(t-Bu)2Me-catalyzed method for the dehydrohalogenation of
alkyl bromides. The fortuitous solubility properties of
[Cy2NH2]Br, combined with the unanticipated regeneration
of Pd(0) prior to the formation of L2PdHBr (L = phosphine),
are likely critical to the success of this process. The latter
observation regarding the timing of reductive elimination is
worth considering when contemplating the mechanism of Heck
reactions.26
■
(1) (a) McMurry, J. Organic Chemistry; Thomson: Belmont, CA,
2008. (b) Smith, J. G. Organic Chemistry; McGraw-Hill: New York,
2010.
(2) Kostikov, R. R.; Khlebnikov, A. F.; Sokolov, V. V. Sci. Synth.
2010, 47b, 771−881.
(3) (a) Chugaev, L. Ber. Dtsch. Chem. Ges. 1899, 32, 3332−3335.
(b) Fuchter, M. J. In Name Reactions for Functional Group
Transformations; Li, J. J., Ed.; Wiley: New York, 2007; pp 334−342.
(4) (a) Burgess, E. M.; Penton, H. R., Jr.; Taylor, E. A. J. Am. Chem.
Soc. 1970, 92, 5224−5226. (b) Holsworth, D. D. In Name Reactions for
Functional Group Transformations; Li, J. J., Ed.; Wiley: New York,
2007; pp 189−206.
(5) (a) Martin, J. C.; Arhart, R. J. J. Am. Chem. Soc. 1971, 93, 4327−
4329. (b) Shea, K. M. In Name Reactions for Functional Group
Transformations; Li, J. J., Ed.; Wiley: New York, 2007; pp 248−264.
(6) (a) Sharpless, K. B.; Young, M. J. Am. Chem. Soc. 1973, 95,
2697−2699. (b) Sharpless, K. B.; Young, M. W. J. Org. Chem. 1975,
40, 947−949. (c) Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org.
Chem. 1976, 41, 1485−1486.
(7) For example, see: Danishefsky, S. J.; Masters, J. J.; Young, W. B.;
Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.;
Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Di Grandi, M. J. J.
Am. Chem. Soc. 1996, 118, 2843−2859.
(8) Kobayashi, T.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. J. Am.
Chem. Soc. 2008, 130, 11276−11277.
(9) Crouch, I. T.; Dreier, T.; Frantz, D. E. Angew. Chem., Int. Ed.
2011, 50, 6128−6132.
(10) For reviews and leading references, see: (a) Glasspoole, B. W.;
Crudden, C. M. Nat. Chem. 2011, 3, 912−913. (b) Kambe, N.;
Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937−4947.
(c) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48,
2656−2670. (d) Netherton, M. R.; Fu, G. C. Top. Organomet. Chem.
2005, 14, 85−108. (e) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed.
2005, 44, 674−688. (f) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal.
2004, 346, 1525−1532.
(11) Netherton, M. R.; Dai, C.; Neuschutz, K.; Fu, G. C. J. Am. Chem.
Soc. 2001, 123, 10099−10100. Also see: Firmansjah, L.; Fu, G. C. J.
Am. Chem. Soc. 2007, 129, 11340−11341.
(12) (a) Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41,
3910−3912. (b) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G.
C. J. Am. Chem. Soc. 2002, 124, 13662−13663. (c) Hills, I. D.;
Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 5749−
5752.
CONCLUSIONS
■
Although the elimination of HX to form an olefin is a classic
transformation in organic chemistry, there remains a need for
new mild methods to accomplish this fundamental process.
Herein we have exploited a generally undesired elementary step
in cross-coupling reactions, β-hydride elimination, to achieve
palladium-catalyzed dehydrohalogenations of alkyl bromides.
This method, which we have applied to a formal total synthesis
of (R)-mevalonolactone, enables the efficient synthesis of
terminal olefins at room temperature in the presence of a
variety of functional groups, including heterocycles. Our
mechanistic studies have established that the rate-determining
step can vary with the structure of the alkyl bromide. Most
significantly, we have determined that L2PdHBr (L =
phosphine), an intermediate that is often invoked in
palladium-catalyzed processes such as the Heck reaction, is
not an intermediate in the active catalytic cycle.
̈
(13) Isomerization of the initially generated olefin by a palladium
hydride intermediate is a well-established side reaction in Heck
14236
dx.doi.org/10.1021/ja306323x | J. Am. Chem. Soc. 2012, 134, 14232−14237