2296 J ournal of Medicinal Chemistry, 2000, Vol. 43, No. 12
Communications to the Editor
(8) Lovejoy, B.; Cleasby, A.; Hassell, A. M.; Longley, K.; Luther, M.
A.; Weigl, D.; McGeehan, G.; McElroy, A. B.; Drewry, D.;
Lambert, M. H.; J ordan, S. R. Structure of the Catalytic Domain
of Fibroblast Collagenase Complexed with an Inhibitor. Science
1994, 263, 375-377.
(9) Borkakoti, N.; Winkler, F. K.; Williams, D. H.; D’Arcy, A.;
Broadhurst, M. J .; Brown, P. A.; J ohnson, W. H.; Murray, E. J .
Structure of the Catalytic Domain of Human Fibroblast Colla-
genase Complexed with an Inhibitor. Nat. Struct. Biol. 1994, 1,
106-110.
(10) Becker, J . W.; Marcy, A. I.; Rokosz, L. L.; Axel, M. G.; Burbaum,
J . J .; Fitzgerald, P. M. D.; Cameron, P. M.; Esser, C. K.;
Hagmann, W. K.; Hermes, J . D.; Springer, J . P. Stromelysin-1:
Three-dimensional Structure of the Inhibited Catalytic Domain
and of the C-Truncated Proenzyme. Protein Sci. 1995, 4, 1966-
1976.
(11) Browner, M. F.; Smith, W. W.; Castelhano, A. L.; Matrilysin-
Inhibitor Complexes: Common Themes among Metalloproteases.
Biochemistry 1995, 34, 6602-6610.
(22) Under the Suzuki coupling conditions (aq Na2CO3/toluene/
reflux), long reaction times (>12 h) gave appreciable racemiza-
tion. The use of 8 instead of the corresponding bromo lactam
was preferred because the higher coupling rate allowed reaction
times to be shortened to about 1 h, thus minimizing racemization
as determined by chiral HPLC (ee’s > 98%).
(23) Proof of the assigned stereochemistry was obtained from single-
crystal X-ray structure analysis of racemic 6f (prepared via
Suzuki coupling of 8 with 3-(4-fluorophenoxy)phenylboronic acid
in refluxing toluene for 16 h). Comparison of the 1H NMR spectra
of 6a -e to the spectrum of 6f showed a common pattern of
chemical shifts and coupling constants for the pyrrolidinone ring
protons. The pattern was clearly distinguishable from that
exhibited by 12.
(24) Retention of the N-BOC group was essential for the success of
the subsequent oxidation.
(25) Zhao, M.; Li, J .; Song, Z.; Desmond, R.; Tschaen, D. M.;
Grabowski, E. J . J .; Reider, P. J . A Novel Chromium Trioxide
Catalyzed Oxidation of Primary Alcohols to the Carboxylic Acids.
Tetrahedron Lett. 1998, 39, 5323-5326.
(26) Nikam, S. S.; Kornberg, B. E.; J ohnson, D. R.; Doherty, A. M.
Synthesis of Hydroxamic Acids: Pd/BaSO4 as a New Catalyst
for the Deprotection of O-Benzyl Hydroxamates. Tetrahedron
Lett. 1995, 36, 197-200.
(27) The synthesis of the 4-benzyloxyphenyl analogue 6e differed
slightly by incorporation of minor changes allowing preservation
of the O-benzyl ether: (1) use of EtOAc as solvent in the
hydrogenation of the double bond (the benzyl ether is not
hydrogenolyzed); (2) use of 2-(trimethylsilyl)ethyl (removed in
the last step using BF3‚OEt2 in CH2Cl2) instead of benzyl as the
hydroxamate protecting group; (3) complete removal of the BOC
group prior to coupling to the hydroxylamine derivative, TMS-
(CH2)2ONH2‚HCl, due to partial loss of the BOC group during
the H5IO6/cat. CrO3 oxidation.
(28) Chen, L.; Rydel, T. J .; Gu, F.; Dunaway, C. M.; Pikul, S.;
Dunham, K. M.; Barnett, B. L. Crystal Structure of the Stromel-
ysin Catalytic Domain at 2.0 A¨ Resolution: Inhibitor-Induced
Conformational Changes. J . Mol. Biol. 1999, 293, 545-557.
(29) Kiyama, R.; Tamura, Y.; Watanabe, F.; Tsuzuki, H.; Ohtani, M.;
Yodo, M. Homology Modeling of Gelatinase Catalytic Domains
and Docking Simulations of Novel Sulfonamide Inhibitors. J .
Med. Chem. 1999, 42, 1723-1738.
(12) Stams, T.; Spurlino, J . C.; Smith, D. L.; Wahl, R. C.; Ho, T. F.;
Qoronfleh, M. W.; Banks, T. M.; Rubin, B. Structure of Human
Neutrophil Collagenase Reveals Large S1′ Specificity Pocket.
Nat. Struct. Biol. 1994, 1, 119-123.
(13) Grams, F.; Crimmin, M.; Hinnes, L.; Huxley, P.; Pieper, M.;
Tschesche, H.; Bode, W. Structure Determination and Analysis
of Human Neutrophil Collagenase Complexed with a Hydrox-
amate Inhibitor. Biochemistry 1995, 34, 14012-14020.
(14) Lovejoy, B.; Welch, A. R.; Carr, S.; Luong, C.; Broka, C.;
Hendricks, R. T.; Campbell, J . A.; Walker, K. A. M.; Martin, R.;
Van Wart, H.; Browner, M. F. Crystal Structures of MMP-1 and
-13 Reveal the Structural Basis for Selectivity of Collagenase
Inhibitors. Nat. Struct. Biol. 1999, 6, 217-221.
(15) Bode, W.; Reinemer, P.; Huber, R.; Kleine, T.; Schnierer,
Tschesche, H. The X-ray Crystal Structure of the Catalytic
Domain of Human Neutrophil Collagenase Inhibited by
a
Substrate Analogue Reveals the Essentials for Catalysis and
Specificity. EMBO J . 1994, 13, 1263-1269.
(16) We did not have access to an X-ray crystal structure of MMP-
13. The model, based on MMP-8, was built using the program
COMPOSER and minimized using the AMBER all-atom force
field as implemented in the Sybyl program. (Sybyl 6.3, Rev 3A;
Tripos Inc., 1699 Hanley Rd, Suite 303, St. Louis, MO 63144.)
(17) Blake, J . F. Unpublished information.
(18) Li, Y.-C.; Zhang, X.; Melton, R.; Ganu, V.; Gonnella, N. C.
Solution Structure of the Catalytic Domain of Human Stromel-
ysin-1 Complexed to a Potent, Nonpeptidic Inhibitor. Biochem-
istry 1998, 37, 14048-14056.
(19) The (S) enantiomer is known: (a) Woo, K.-C.; J ones, K. Asym-
metric Synthesis from R-Amino Acids; Some Reactions of (S)-
Pyroglutamate. Tetrahedron Lett. 1991, 6949-6952. (b) Shima-
moto, K.; Ishida, M.; Shinozaki, H.; Ohfune, Y. Synthesis of Four
Diastereomeric L-2-(Carboxycyclopropyl)glycines. Conformation-
ally Constrained L-Glutamate Analogues. J . Org. Chem. 1991,
56, 4167-4176.
(20) J ohnson, C. R.; Adams, J . P.; Braun, M. P.; Senanayake, C. B.
W.; Wovkulich, P. M.; Uskokovic, M. R. Direct R-Iodination of
Cycloalkenones. Tetrahedron Lett. 1992, 33, 917-918.
(21) In the Suzuki couplings of 8, the arylboronic acids were prefer-
ably generated from the corresponding diethanolamine com-
plexes; see: Caron, S.; Hawkins, J . M. Directed Ortho Metalation
of Neopentyl Benzoates with LDA: Preparation of Arylboronic
Acids. J . Org. Chem. 1998, 63, 2054-2055.
(30) The isomer 12 was obtained via treatment of the intermediate
corresponding to 10 with DBU (3.5 equiv) in toluene at room
temperature. The epimeric product was then advanced to 12 in
the usual way.
(31) The acid 13 was prepared by treatment of the corresponding
N-BOC compound with HCl gas in CH2Cl2.
(32) Szardenings, A. K.; Harris, D.; Lam, S.; Shi, L.; Tien, D.; Wang,
Y.; Patel, D. V.; Navre, M.; Campbell, D. A. Rational Design and
Combinatorial Evaluation of Enzyme Inhibitor Scaffolds: Iden-
tification of Novel Inhibitors of Matrix Metalloproteinases. J .
Med. Chem. 1998, 41, 2194-2200.
J M0001368