+
+
514 J ournal of Medicinal Chemistry, 1997, Vol. 40, No. 4
Ksander et al.
(15) Lovejoy, B.; Cleasby, A.; Hassell, A. M.; Longley, K.; Luther, M.
A.; Weigl, D.; McGeehan, G.; McElroy, A. B.; Drewry, D.;
Lambert, M. H.; J ordan, S. R. Structure of the Catalytic Domain
of Fibroblast Collagenase Complexed with an Inhibitor. Science
1994, 263, 375-377.
(16) Gooley, P. R.; O’Connell, J . F.; Marcy, A. I.; Cuca, G. C.; Salowe,
S. P.; Bush, B. L.; Hermes, J . D.; Esser, C. K.; Hagmann, W. K.;
Springer, J . P.; J ohnson, B. A. The NMR Structure of the
Inhibited Catalytic Domain of Human Stromelysin-1. Struct.
Biol. 1994, 1, 111-118.
(17) Borkakoti, N.; Winkler, F. K.; Williams, D. H.; D’Arcy, A.;
Broadhurst, M. J .; Brown, P. A.; J ohnson, W. H.; Murray, E. J .
Structure of the catalytic domain of human fibroblast collagenase
complexed with an inhibitor. Struct. Biol. 1994, 1, 106-110.
(18) Bode, W.; Reinemer, P.; Huber, R.; Kleine, T.; Schnierer, S.;
Tschesche, H. The X-ray crystal structure of the catalytic domain
Constrained Peptidomimetics of Mercaptoacyl Dipeptides. Bioorg.
Med. Chem. Lett. 1994, 4, 1789-1794. (k) Delaney, N. G.;
Barrish, J . C.; Neubeck, R.; Natarajan, S.; Cohen, M.; Rovnyak,
G. C.; Huber, G.; Murugesan, N.; Girotra, R.; Sieber-McMaster,
E.; Robl, J . A.; Asaad, M. M.; Cheung, H. S.; Bird, J . E.; Waldron,
T.; Petrillo, E. W. Mercaptoacyl Dipeptides as Dual Inhibitors
of Angiotensin Converting Enzyme and Neutral Endopeptidase.
Preliminary Structure-Activity Studies. Bioorg. Med. Chem. Lett.
1994, 4, 1783-1788. (l) Gomez-Monterrey, I.; Beaumont, A.;
Nemecek, P.; Roques, B. P.; Fournie-Zaluski, M. C. New Thiol
Inhibitors of Neutral Endopeptidase EC 3.4.24.11: Synthesis
and Enzyme Active Site Recognition. J . Med. Chem. 1994, 37,
1865-1873. (m) Fournie-Zaluski, M. C.; Coric, P.; Turcaud, S.;
Rousselet, N.; Gonzalez, W.; Barbe, P.; Pham, I.; J ullian, N.;
Michel, J .; Roques, B. P. New Dual Inhibitor of Neutral En-
dopeptidase and Angiotensin Converting Enzyme: Rational
Design, Bioavailability, and Pharmacological Response in Ex-
perimental Hypertension. J . Med. Chem. 1994, 37, 1070-1083.
(n) Stanton, J . L.; Sperbeck, D. M.; Trapani, A. J .; Cote, D.;
Sakane, Y.; Berry, C. J .; Ghai, R. D. Heterocyclic Lactam
Derivatives as Dual Angiotensin Converting Enzyme and Neu-
tral Endopeptidase 24.11 Inhibitors. J . Med. Chem. 1993, 36,
3829-3833. (o) Flynn, G. A.; Beight, D. W.; Mehdi, S.; Koehl, J .
R.; Giroux, E. L.; French, J . F.; Hake, P. W.; Dage, R. C.
Application of a Conformationally Restricted Phe-Leu Dipeptide
Mimetic to the Design of a Combined Inhibitor of Angiotensin-I
Converting Enzyme and Neutral Endopeptidase 24.11 J . Med.
Chem. 1993, 36, 2420-2423. (p) Bhagwat, S. S.; Fink, C. A.; Gude,
C.; Chan, K.; Qiao, Y.; Sakane, Y.; Berry, C.; Ghai, R. D.
R-Mercaptoacyl Dipeptides that Inhibit Angiotensin Converting
Enzyme and Neutral Endopeptidase 24.11. Bioorg. Med. Chem.
Lett. 1995, 5, 735-738. (q) Fink, C. A.; Qiao, Y.; Berry, C. J .;
Sakane, Y.; Ghai, R. D.; Trapani, A. New R-Thiol Dipeptide Dual
Inhibitors of Angiotensin-I Converting Enzyme and Neutral
Endopeptidase EC 3.4.24.11. J . Med. Chem. 1995, 38, 5023-
5030.
of human neutrophil collagenase inhibited by
a substrate
analogue reveals the essentials for catalysis and specificity.
EMBO J . 1994, 13, 1263-1269.
(19) Stams, T.; Spurlino, J . C.; Smith, D. L.; Wahl, R. C.; Ho, T. F.;
Qoronfleh, M. W.; Banks, T. M.; Rubin, B. Structure of human
neutrophil collagenase reveals large S1′ specificity pocket. Struct.
Biol. 1994, 1, 119-123.
(20) Becker, J . W.; Marcy, A. I.; Rokosz, L. L.; Axel, M. G.; Burbaum,
J . J .; Fitzgerald, P. M. D.; Cameron, P. M.; Esser, C. K.;
Hagmann, W. K.; Hermes, J . D.; Springer, J . P. Stromelysin-1:
Three-dimension structure of the inhibited catalytic domain and
the C-truncated proenzyme. Protein Sci. 1995, 4, 1966-1976.
(21) Browner, M.; Smith, W.; Castelhano, A. Matrilysin-Inhibitor
complexes: common themes among metalloproteases. Biochem-
istry 1995, 34, 660-6610.
(22) Gomis-Rueth, F. X.; Kress, L. F.; Kellermann, J .; Mayr, I.; Lee,
X.; Huber, R.; Bode, W. Refined 2.0 A0
X-ray crystal Structure
of the Snake Venom Zinc-endopeptidase Adamalysin II. J . Mol.
Biol. 1994, 239, 513-544.
(2) Bohacek, R.; De Lombaert, S.; McMartin, C.; Priestle, J .;
Gruetter, M. Three-Dimensional Models of ACE and NEP
Inhibitors and their Use in the Design of Potent Duel ACE/NEP
Inhibitors .J . Am. Chem. Soc. 1996, 118, 8231-8249.
(3) Hausin, R. J .; Codding, P. W. Crystallographic Studies of
Angiotensin Converting Enzyme Inhibitors and Analysis of
Preferred Zinc Coordination Geometry. J . Med. Chem. 1990, 33,
1940-1947.
(4) (a)McMartin, C.; Bohacek, R. Flexible Matching of Test Ligands
to a 3-D Pharmacophore Using a Molecular Superposition Force
Field: Comparison of Predicted and Experimental Conforma-
tions of Inhibitors of Three Enzymes. J . Comput. Aided Mol. Des.
1995, 9, 237-250. (b) McMartin, C.; Bohacek, R. QXP; a basic
set of powerful, user friendly computer routines for structue-
based drug design. J . Comput.-Aided Mol. Des., in press.
(5) Andrews, P. R.; Carson, J . M.; Caselli, A.; Spark, M. J .; Woods,
R. Conformational Analysis and Active Site Modelling of An-
giotensin-Converting Enzyme Inhibitors. J . Med. Chem. 1985,
28, 393-399.
(6) Mayer, D.; Naylor, C. B.; Motoc, I.; Marshall, G. R. A Unique
Geometry of the Active Site of Angiotensin-Converting Enzyme
Consistent with Structure-Activity Studies. J . Comput.-Aided
Mol. Des. 1987, 1, 3-16.
(7) Soubrier, F.; Alhenc-Gelas, F.; Hubert, C.; Allegrini, J .; J ohn,
M.; Tregear, G.; Corvol, P. Two putative active centers in human
angiotensin I-converting enzyme revealed by molecular cloning.
Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 9386-9390.
(23) Baumann, U.; Wu, S.; Flaherty, K. M.; McKay, D. B. Three-
dimensional X-ray crystallographic structure of the alkaline
protease of Pseudomonas aeruginosa. EMBO J . 1993, 12, 3357-
3364.
(24) Bode, W.; Gomis-Rueth, F.-X.; Stoeckler, W. Astacins, serral-
ysins, snake venom and matrix metalloproteinases exhibt identi-
cal zinc-binding environments (HEXXHXXGXXH and Met-trun)
and topologies and should be grouped into a common family, the
“metzincins”. FEBS 1993, 331, 134-140.
(25) Devault, A.; Sales, N.; Nault, C.; Beaumont, A.; Roques, B. P.;
Crine, P.; Boileau, G. Exploration of the catalytic site of
endopeptidase 24.11 by site-directged mutagenesis. Histidine
residues 583 and 587 are essential for catalysis. FEBS Lett.
1988, 231, 54-58.
(26) Devault, A.; Nault, C.; Zollinger, M.; Fournie-Zaluski, M. C.;
Roques, B. P.; Crine, P.; Boileau, G. Expression of neutral
endopeptidase (enkephalinase) in heterologous COS-1 cells. J .
Biol. Chem. 1988, 263, 4033-4040.
(27) Williams, T. A.; Corvol, P.; Soubrier, F. Identification of Two
Active Site Residues in Human Angiotensin I-Converting En-
zyme. J . Biol. Chem. 1994, 269, 29430-29434.
(28) Moual, H. L.; Devault, A.; Roques, B. P.; Crine, P.; Boileau, G.
Identification of Glutamic Acid-646 as
a Zinc-coordinating
Residue in Endopeptidase-24.11. J . Biol. Chem. 1991, 266,
15670-15674.
(8) Kester, W. R.; Matthews, B. W. Crystallographic Study of the
Binding of Dipeptide Inhibitors to Thermolysin: Implications
for the Mechanism of Catalysis. Biochemistry 1977, 16, 2506-
2516.
(9) Devault, A.; Lazure, C.; Nault, C.; Seidah, N. g.; Chretien, M.;
Kahn, P.; Powell, J .; Mallet, J .; Beaumont, A.; Roques, B. P.;
Crine, P.; Boileau, G. Amino Acid sequence of rabbit kidney
neutral endopeptidase 24.11 (enkephalinase) deduced from a
complementary DNA. EMBO J . 1987, 6, 1317-13422.
(10) Vallee, B. L.; Auld, D. S. Zinc Coordination, Function, and
Structure of Zinc Enzymes and Other Proteins. Biochemistry
1990, 29, 5647-5659.
(11) J ongeneel, C. V.; Bouvier, J .; Bairoch, A. A unique signature
identifies a family of zinc-dependent metallopeptidases. FEBS
Lett. 1989, 242, 211-214.
(12) Stoeckler, W.; Grams, F.; Baumann, U.; Reinemer, P.; Gomix-
Rueth, F.; McKay, D. B.; Bode, W. The metzincins - Topological
and sequential relations between the astacins, adamalysisn,
serralysins and matrixins(collagenases) define a superfamily of
zinc-peptidases. Protein Sci. 1995, 4, 823-840.
(29) Flynn, G. A.; Beight, D. W.; Mehdi, S.; Koelh, J . R.; Giroux, E.
L.; French, J . F.; Hake, P. W.; Dage, R. C. Application of a
Conformationally Restricted Dipeptide Mimetic to the Design
of a Combined Inhibitor of Angiotensin I-Converting Enzyme
and Neutral Endopeptidase 24.11. J . Med. Chem. 1993, 36,
2420-1423.
(30) Mohamadi, F.; Richards, N. G. J .; Guida, W. C.; Liskamp, R.;
Lipton, M.; G., C.; Chang, G.; Hendirckson, T.; Still, W. C.
MACROMODEL - An Integrated Software System for Modelling
Organic and Bioorganic Molecules Using Molecular Mechanics.
J . Comput. Chem. 1990, 11, 440-467.
(31) (a)Berger, J . G. A Novel Approach to Analgesia: Synthesis and
Structure-Activity Relationships of Some Potent and Selective
Inhibitors of Enkephalinase. In Abstracts of the 19th National
Medicinal Chemistry Symposium; Tucson, AZ, J une 17-21,
1984; pp 39-52. (b) Ksander, G. M.; Ghai, R. D.; de J esus, R.;
Diefenbacher, C.; Yuan, A.; Berry, C.; Sakane,Y.; Trapani, A.
Dicarboxylic Acid Dipeptide Neutral Endopeptidase Inhibitors.
J . Med. Chem. 1995, 38, 1689-1700.
(32) De Lombaert, S.; Erion, M. E.; Tan, J .; Blanchard, L.; El-
Chehabi, L.; Ghai, R. D.; Sakane, Y.; Berry, C.; Trapani, A.
N-Phosphonomethyl Dipeptides and Their Phosphonate Pro-
drugs, a New Generation of Neutral Endopeptidase (NEP, EC
3.4.24.11) Inhibitors. J . Med. Chem. 1994, 37, 498-511.
(13) Matthews, B. W. Structural Basis of the Action of Thermolysin
and Related Zinc Peptidases. Acc. Chem. Res. 1988, 21, 333-
340.
(14) Bode, W.; Gomis-Rueth, F.-X.; Huber, R.; Zwilling, R.; Stoeckler,
W. Structure of astacin and implications for activation of
astacins and zinc-ligation of collagenases. Nature 1992, 358,
164-167.
J M960583G