F. Antras et al. / Tetrahedron Letters 43 (2002) 5029–5031
5031
Table 2. Synthesis of pentafulvenes 8 via reduction of 4-alkylidenecyclopentenone/dehydration
OH
O
1) AlLiH4
R1
R1
R2
R1
R2
1a-e
4% pTsOH
Ether / 0°C
R3
R3
R3
R2
Petroleum ether / rt
(- H2O)
2) H2O
R4
R4
R4
8
7
Cyclopentenone 1
R1
R2
R3
nC6H13
R4
Yield (%)a alcohol 7
Yield (%)b pentafulvene 8
1a
1b
1c
1d
1e
nC3H7
CH3
nC3H7
nC3H7
Ph
nC3H7
CH3
H
nC3H7
H
H
97
95
99
99
94
53
68
82
62
48
-(CH2)5-
-(CH2)5-
-(CH2)5-
-(CH2)5-
a Yield of crude alcohols.
b Yield of purified products after short chromatography on alumina.
References
sium bromide (1.28 mmol, 2.5 equiv.) in Et2O (5 mL) at
0°C, a solution of 4-alkylidenecyclopentenone 1b (97 mg,
0.51 mmol) in Et2O (4 mL) was added dropwise. After
the reaction was completed, the mixture was quenched
with a saturated aqueous NH4Cl solution (10 mL) and
extracted with ether (2×10 mL). The combined organic
phases were dried over anhydrous MgSO4, filtered and
concentrated under vacuo. The mixture was diluted with
petroleum ether (4 mL), and pTsOH (0.2N THF solu-
tion, 50 mL, 0.02 equiv.) was added. After stirring for 10
min., a short chromatography on alumina (Grad III, PE
as eluent) afforded 6,6%-pentamethylene-1,2,3-trimethyl-
pentafulvene 6f (70 mg, 72%) as a yellow oil. TLC
(Al2O3, PE): Rf=0.74. IR (neat, cm−1): 2960, 2920, 2860,
1. (a) Martin, G. J.; Rabiller, C.; Marton, G. Tetrahedron
Lett. 1970, 10, 3131–3132; (b) Martin, G. J.; Rabiller, C.;
Marton, G. Tetrahedron 1972, 28, 4027–4037.
2. Hashni, A. S.; Bats, J. W.; Choi, J. H. Tetrahedron Lett.
1998, 39, 7491–7494.
3. Ahmar, M.; Antras, F.; Cazes, B. Tetrahedron Lett. 1995,
36, 4417–4420.
4. Antras, F.; Ahmar, M.; Cazes, B. Tetrahedron Lett. 2001,
42, 8153–8156.
5. Ahmar, M.; Chabanis, O.; Gauthier, J.; Cazes, B. Tetra-
hedron Lett. 1997, 38, 5277–5280.
6. Antras, F.; Ahmar, M.; Cazes, B. Tetrahedron Lett. 2001,
42, 8157–8160.
1
1620, 1450, 1380, 1340, 1080, 730. H NMR (300 MHz,
CDCl3): l 1.69 (m, 6H), 1.89 (s, 3H), 1.97 (s, 3H), 2.16 (s,
3H), 2.57 (t, 3J=6.6 Hz, 2H), 2.74 (t, 3J=6.6 Hz, 2H),
6.18 (s, 1H). 13C NMR (75 MHz, CDCl3): l 11.0, 14.2
and 15.4 (3×CH3); 26.7, 28.6, 29.2, 32.0 and 34.8 (5×
CH2); 115.7 (C4); 125.8 (C1); 137.8 (C5); 139.6 (C2); 140.7
(C3); 152.2 (C6).
7. Martin, G. J.; Rabiller, C. Tetrahedron Lett. 1975, 15,
3713–3714.
8. McGarrity, J. F.; Ogle, C. A. J. Am. Chem. Soc. 1985,
107, 1805–1810.
9. Luitjes, H.; Shakel, M.; Schmitz, R. F.; Klumpp, G. W.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2152–2153.
10. (a) McGarrity, J. F.; Ogle, C. A.; Brich, Z.; Loosli, H. R.
J. Am. Chem. Soc. 1985, 107, 1810–1815; (b) DeLong, G.
T.; Pannell, D. K.; Clarke, M. T.; Thomas, R. D. J. Am.
Chem. Soc. 1993, 115, 7013–7014.
11. Wakefield, B. J. In Comprehensive Organometallic Chem-
istry; Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.;
Pergamon Press: Oxford, 1982; Vol. 7, pp. 1–110.
12. Typical procedure (Table 1, entry 11): To methylmagne-
13. (a) Neuenschwander, M. In The Chemistry of Double-
Bonded Functional Groups; Patai, S., Ed.; J. Wiley: New
York, 1989; pp. 1131–1268; (b) Zeller, K.-P. In Houben-
Weyl, Methoden der organischen Chemie; Georg Thieme:
Stuttgart, 1985; 5/2c, pp. 504–684; (c) Rigby, J. H. In
Comprehensive Organic Synthesis; Trost, B. M.; Fleming,
I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, pp.
617–643.