led to a new photodynamic picture for the GFP chromophore.
Further studies toward the identification of the deactivating
H-bonding modes for p-HBDI in protic solvents are in pro-
gress in our laboratory.
We thank the National Science Council and Ministry of
Education of Taiwan, ROC, for financial support.
Fig. 2 Simplified scheme for the radiationless decay channels for p-
HBDI and its amino analogues p-ABDI and m-ABDI in bulk protic
vs. aprotic solvents.
Notes and references
The photochemical behaviour of p-HBDI essentially paral-
lels that of p-ABDI (Table 1), although attempts to obtain
more accurate FZE values for p-HBDI in protic solvents are
hampered by the unstable E isomer in protic solvents.12,13 The
similar behaviour of p-HBDI and p-ABDI is reminiscent of the
common photodynamic scheme for the neutral and anionic
forms of p-HBDI.1,2 Thus, the correlation between p-ABDI
and the anionic p-HBDI appears to be appropriate.
1 (a) R. Y. Tsien, Annu. Rev. Biochem., 1998, 67, 509; (b) M.
Zimmer, Chem. Rev., 2002, 102, 759; (c) M. Zimmer, Cis–trans
Isomerization in Biochemistry, ed. C. Dugave, Wiley-VCH, Wein-
heim, 2006, pp. 77.
2 (a) N. M. Webber, K. L. Litvinenko and S. R. Meech, J. Phys. Chem.
B, 2001, 105, 8036; (b) K. L. Litvinenko, N. M. Webber and S. R.
Meech, J. Phys. Chem. A, 2003, 107, 2616; (c) D. Mandal, T. Tahara
and S. R. Meech, J. Phys. Chem. B, 2004, 108, 1102; (d) N. M. Webber
and S. R. Meech, Photochem. Photobiol. Sci., 2007, 6, 976.
3 P. Altoe, F. Bernardi, M. Garavelli, G. Orlandi and F. Negri, J.
Am. Chem. Soc., 2005, 127, 3952.
Accordingly, we might conclude that p-HBDI simulta-
neously possesses two different ultrafast raditionless decay
channels (Fig. 2). Whereas the decay in protic solvents in-
volves both the solute–solvent H-bond-mediated internal con-
version (major) and CQC bond torsion (minor), the CQC
bond torsion alone accounts for the decay in aprotic solvents.
It is important to note that H-bonding-induced deactivation is
consistent with the volume-conserving photodynamic scheme
observed for p-HBDI in alcohols.2 In addition, the deactivat-
ing H-bonded intermediate appears to be different from the
Franck–Condon excited state, and its formation requires the
reorganization of the solvent H-bonding network and vibra-
tional relaxations of the excited p-HBDI in order to account
for the previously proposed two-state two-mode model.2c
Although the exact deactivating H-bonding modes remain to
be determined, the most possible candidates are the H-bonds
between the solvent molecules (H-bond donor) and the imi-
dazolinone group (H-bond acceptor) of p-HBDI. One reason
is that the imidazolinone group becomes a better H-bond
acceptor in the lowest excited state (S1) than in the ground
state (S0) as a result of ICT. Another reason is that the imino
nitrogen of the imidazolinone group is not H-bonded to any
water molecules or neighbouring residues inside the protein b-
barrel.1 It appears that the protein matrix not only suppresses
the CQC bond torsion3,10 but also prevents the formation of
the specific H-bonding modes in the excited state, which
accounts for the high fluorescence quantum yield of GFP. It
should be pointed out that a general H-bonding effect in the
excited-state decay of p-HBDI and its derivatives has been
noted.2,7 However, the argument of the presence of certain
H-bonding modes that dominate the nonradiative decays of
p-HBDI in protic solvents had not been recognized. Meech
et al. had considered solvent–chromophore H-bonding as a
possible nonradiative mechanism for p-HBDI, but it was finally
ruled out in view of the fact that this channel alone cannot
interpret their data in acetonitrile (aprotic) vs. methanol (protic).2c
In summary, we have provided for the first time the Z - E
photoisomerization quantum yields for p-HBDI and its amino
analogues p-ABDI and m-ABDI in both aprotic and protic
solvents. In addition, m-ABDI displays record-high fluores-
cence in aprotic solvents at room temperature. The solvent-
dependent fluorescence and photoisomerization behaviour has
4 A. Usman, O. F. Mohammed, E. T. J. Nibbering, J. Dong, K. M.
Solntsev and L. M. Tolbert, J. Am. Chem. Soc., 2005, 127, 11214.
5 (a) M. E. Martin, F. Negri and M. Olivucci, J. Am. Chem. Soc.,
2004, 126, 5452; (b) S. S. Stavrov, K. M. Solntsev, L. M. Tolbert
and D. Huppert, J. Am. Chem. Soc., 2006, 128, 1540.
6 (a) W. Weber, V. Helms, J. A. McCammon and P. W. Langhoff, Proc.
Natl. Acad. Sci. U. S. A., 1999, 96, 6177; (b) A. Toniolo, S. Olsen, L.
´
Manohar and T. J. Martınez, Faraday Discuss., 2004, 127, 149.
7 A. Follenius-Wund, M. Bourotte, M. Schmitt, F. Iyice, H. Lami, J.-
J. Bourguignon, J. Haiech and C. Pigault, Biophys. J., 2003, 85, 1839.
8 (a) A. D. Kummer, C. Kompa, H. Niwa, T. Hirano, S. Kojima and M.
E. Michel-Beyerle, J. Phys. Chem. B, 2002, 106, 7554; (b) K.-Y. Chen,
Y.-M. Cheng, C.-H. Lai, C.-C. Hsu, M.-L. Ho, G.-H. Lee and P.-T.
Chou, J. Am. Chem. Soc., 2007, 129, 4534; (c) J. Dong, K. M. Solntsev,
O. Poizat and L. M. Tolbert, J. Am. Chem. Soc., 2007, 129, 10084.
9 (a) A. D. Kummer, J. Wiehler, H. Rehaber, C. Kompa, B. Steipe
and M. E. Michel-Beyerle, J. Phys. Chem. B, 2000, 104, 4791; (b)
D. C. Loos, S. Habuchi, C. Flors, J. Hotta, J. Wiedenmann, G. U.
Nienhaus and J. Hofkens, J. Am. Chem. Soc., 2006, 128, 6270.
10 M. C. Chen, C. R. Lambert, J. D. Urgitis and M. Zimmer, Chem.
Phys., 2001, 270, 157.
11 E. V. Anslyn and D. A. Dougherty, Modern Physical Organic
Chemistry, University Science Books, Sausalito, CA, 2006, pp. 965.
12 X. He, A. F. Bell and P. J. Tonge, FEBS Lett., 2003, 549, 358.
13 (a) B. Hager, B. Schwarzinger and H. Falk, Monatsh. Chem., 2006,
137, 163; (b) The tryptophan-derived GFP chromophore was also
found to undergo thermal E - Z isomerization with a slower rate
than that for p-HBDI (K. Fendler, B. Hager and H. Falk,
Monatsh. Chem., 2007, 138, 859), which can also be attributed to
the slightly acidic indole group (pKa = 20.95 in DMSO) (ref. 16).
14 F. G. Bordwell, R. J. McCallum and W. N. Olmstead, J. Org.
Chem., 1984, 49, 1424.
15 F. G. Bordwell, G. E. Drucker and H. E. Fried, J. Org. Chem.,
1981, 46, 632.
16 (a) J.-S. Yang, K.-L. Liau, C.-M. Wang and C.-Y. Hwang, J. Am. Chem.
Soc., 2004, 126, 12325; (b) J.-S. Yang, K.-L. Liau, C.-W. Tu and C.-Y.
Hwang, J. Phys. Chem. A, 2006, 110, 8003–8010; (c) J.-S. Yang, K.-L.
Liau, C.-Y. Li and M.-Y. Chen, J. Am. Chem. Soc., 2007, 129, 13183.
17 S. Kojima, H. Ohkawa, T. Hirano, S. Maki, H. Niwa, M. Ohashi,
S. Inouye and F. I. Tsuji, Tetrahedron Lett., 1998, 39, 5239.
18 (a) J. Saltiel and J. L. Charlton, in Rearrangements in Ground and
Excited States, ed. P. de Mayo, Academic Press, New York, 1980,
vol. 3, pp. 25; (b) H. Gorner and H. J. Kuhn, Adv. Photochem.,
1995, 19, 1.
¨
19 F. D. Lewis, R. S. Kalgutkar and J.-S. Yang, J. Am. Chem. Soc.,
1999, 121, 12045.
20 Y. You, Y. He, P. E. Burrows, S. R. Forrest, N. A. Petasis and M.
E. Thompson, Adv. Mater., 2000, 12, 1678.
21 F. D. Lewis and J. -S. Yang, J. Phys. Chem., 1996, 100, 14560, and
references cited therein.
22 L. Biczok, T. Berces and H. Linschitz, J. Am. Chem. Soc., 1997,
´ ´
119, 11071, and references cited therein.
ꢀc
This journal is The Royal Society of Chemistry 2008
1346 | Chem. Commun., 2008, 1344–1346