Crystal structural determination
(c) R. Ziessel, S. Diring, P. Kadjane, L. Charbonnie`re, P. Retailleau and
C. Philouze, Chem.–Asian J., 2007, 2, 975.
5 (a) M. Mehlsta¨ubl, G. S. Kottas, S. Colella and L. De Cola, Dalton
Trans., 2008, 2385; (b) G. S. Kottas, M. Mehlsta¨ubl, R. Fro¨hlich
and L. De Cola, Eur. J. Inorg. Chem., 2007, 3465; (c) P. Kadjane, L.
Charbonnie`re, F. Camerel, P. P. Laine´ and R. Ziessel, J. Fluoresc., 2008,
18, 119.
6 (a) P. A. Vigato, V. Peruzzo and S. Tamburini, Coord. Chem. Rev., 2009,
253, 1099; (b) S. Swavey and R. Swavey, Coord. Chem. Rev., 2009, 253,
2627.
7 (a) A. Fratini, G. Richards, E. Larder and S. Swavey, Inorg. Chem.,
2008, 47, 1030; (b) T.-S. Kang, B. S. Harrison, M. Bouguettaya, T. J.
Foley, J. M. Boncella, K. S. Schanze and J. R. Reynold, Adv. Funct.
Mater., 2003, 13, 205.
8 M. Albrecht, M. Fiege and O. Osetska, Coord. Chem. Rev., 2008, 252,
812.
9 (a) D. Imbert, S. Comby, A.-S. Chauvin and J.-C. G. Bu¨nzli, Chem.
Commun., 2005, 1432; (b) S. Comby, D. Imbert, A.-S. Chauvin and J.-
C. G. Bu¨nzli, Inorg. Chem., 2006, 45, 732; (c) M. Albrecht, R. Fro¨hlich,
J.-C. G. Bu¨nzli, A. Aebischer, F. Gumy and J. Hamacek, J. Am. Chem.
Soc., 2007, 129, 14178; (d) N. M. Shavaleev, R. Scopelliti, F. Gumy and
J.-C. G. Bu¨nzli, Inorg. Chem., 2008, 47, 9055; (e) N. M. Shavaleev, R.
Scopelliti, F. Gumy and J.-C. G. Bu¨nzli, Inorg. Chem., 2009, 48, 2908.
10 (a) R. Van Deun, P. Fias, P. Nockemann, A. Schepers, T. N. Parac-
Vogt, K. Van Hecke, L. van Meervelt and K. Binnemans, Inorg. Chem.,
2004, 43, 8461; (b) F. Artizzu, P. Deplano, L. Marchio`, M. L. Mercuri,
L. Pilia, A. Serpe, F. Quochi, R. Orru`, F. Cordella, F. Meinardi, R.
Tubino, A. Mura and G. Bongiovanni, Inorg. Chem., 2005, 44, 840.
11 (a) G. B. Deacon, C. M. Forsyth, P. C. Junk, U. Kynast, G. Meyer, J.
Moore, J. Sierau and A. Urbatsch, J. Alloys Compd., 2008, 451, 436;
(b) M. Iwamuro, T. Adachi, Y. Wada, T. Kitamura, N. Nakashima and
S. Yanagida, Bull. Chem. Soc. Jpn., 2000, 73, 1359; (c) A. Meyers, A.
Kimyonok and M. Weck, Macromolecules, 2005, 38, 8671.
12 (a) L.-N. Sun, H.-J. Zhang, J.-B. Yu, S.-Y. Yu, C.-Y. Peng, S. Dang,
X.-M. Guo and J. Feng, Langmuir, 2008, 24, 5500; (b) L. Ning, M. I.
Trioni and G. P. Brivio, J. Mater. Chem., 2007, 17, 4464; (c) R. Kikkeri,
L. H. Hossain and P. H. Seeberger, Chem. Commun., 2008, 2127; (d) A.
Nonat, D. Imbert, J. Pe´caut, M. Giraud and M. Mazzanti, Inorg. Chem.,
2009, 48, 4207.
Single crystals of 2·H2O and 4·H2O suitable for X-ray diffrac-
tion were grown by layering n-hexane onto the corresponding
dichloromethane solutions, respectively. Data collection was per-
formed on Rigaku Mercury CCD diffractometer for 2·H2O, and
SATURN70 CCD diffractometer for 4·H2O by scan technique at
room temperature using graphite-monochromated Mo–K (l =
˚
0.71073 A) radiation. The Lp corrections were carried out
in the reflection reduction process. The structures were solved
by direct methods. The remaining non-hydrogen atoms were
determined from the successive difference Fourier syntheses. The
non-hydrogen atoms were refined anisotropically except for the
F atoms, and the hydrogen atoms were generated geometrically
with isotropic thermal parameters. The structures were refined on
F2 by full-matrix least-squares methods using the SHELXTL-97
program package.29 The refinements were carried out by fixing the
˚
C–F distances (1.32 0.01 A) with the occupancy factors of F and
F¢ being 0.50, respectively. Crystallographic data are summarized
◦
˚
below. Selected bond distances (A) and angles ( ) for 2·H2O and
4·H2O were presented in Table 1.
Crystal Data for 2·2H2O (CCDC 803484): C62H36Eu2F36-
N2O16·2H2O, Mr = 2088.88, monoclinic, space group P21/n, a =
◦
˚
3
˚
˚
13.951(5) A, b = 18.353(5) A, c = 15.516(5) A, b = 106.683(5) ; V =
-1
-1
˚
3806(2) A , Z = 2, rc = 1.823 g cm , m(Mo–Ka) = 1.788 mm , T =
293(2) K, 25 742 reflections collected, 5474 unique (Rint = 0.066),
R1 = 0.0618, wR2 = 0.1626 for 6560 reflections with I > 2s(I),
GOF = 1.167.
Crystal Data for 4·2H2O (CCDC 803485): C66H46F36N4O16-
Nd2·2H2O, Mr = 2159.58, monoclinic, space group C2/c, a =
◦
˚
˚
˚
27.259(7) A, b = 14.464(3) A, c = 23.046(5) A, b = 105.126(5) ,
3
-1
-1
˚
13 (a) S. Comby, and J.-C. G. Bu¨nzli, Handbook on the Physics and
Chemistry of Rare Earths, Vol. 37 (ed.: K. A. Gschneidner, J.-
C. G. Bu¨nzli and V. K. Pecharsky), Elsevier, 2007, p.217; (b) S. Comby,
D. Imbert, C. Vandevyver and J.-C. G. Bu¨nzli, Chem.–Eur. J., 2007, 13,
936.
V = 8771(4) A , Z = 4, rc = 1.635 g cm , m(Mo–Ka) = 1.309 mm ,
T = 293(2) K, 24 726 reflections collected, 6286 unique (Rint
=
0.028), R1 = 0.0578, wR2 = 0.1525 for 7207 reflections with I >
2s(I), GOF = 1.103.
14 (a) H.-B. Xu, H.-M. Wen, Z.-H. Chen, J. Li, L.-X. Shi and Z.-N. Chen,
Dalton Trans., 2010, 39, 1948; (b) H.-B. Xu, Y.-T. Zhong, W.-X. Zhang,
Z.-N. Chen and X.-M. Chen, Dalton Trans., 2010, 39, 5676; (c) R. V.
Deun, P. Fias, P. Nockemann, A. Schepers, T. N. Parac-Vogt, K. V.
Hecke, L. V. Meervelt and K. Binnemans, Inorg. Chem., 2004, 43, 8461.
15 H.-B. Xu, X.-M. Chen, Q.-S. Zhang, L.-Y. Zhang and Z.-N. Chen,
Chem. Commun., 2009, 7318.
Acknowledgements
This work was financially supported by the NSFC (20901077),
the 973 project (2007CB815304) from MSTC, and NSF of Fujian
Province (2008I0027 and 2008F3117).
16 H. He, X. Zhu, A. Hou, J. Guo, W.-K. Wong, W.-Y. Wong, K.-F. Li
and K.-W. Cheah, Dalton Trans., 2004, 4064.
17 H.-B. Xu, J. Li, L.-Y. Zhang, X. Huang, B. Li and Z. N. Chen, Cryst.
Growth Des., 2010, 10, 4101.
18 (a) V. A. Montes, R. Pohl, J. Shinar and P. Jr. Anzenbacher, Chem.–
Eur. J., 2006, 12, 4523; (b) C. Pe´rez-Bolivar, V. A. Montes and P. Jr.
Anzenbacher, Inorg. Chem., 2006, 45, 9610.
19 (a) B. Chen, L. Wang, F. Zapata, G. Qian and E. B. Lobkovsky, J. Am.
Chem. Soc., 2008, 130, 6718; (b) H. Tsukube, A. Onimaru and S.
Shinoda, Bull. Chem. Soc. Jpn., 2006, 79, 725.
20 G. F. de Sa´, O. L. Malta, C. de Mello Donega´, A. M. Simas, R. L.
Longo, P. A. Santa-Cruz and E. F. da Silva Jr, Coord. Chem. Rev.,
2000, 196, 165.
21 (a) N. M. Shavaleev, S. J. A. Pope, Z. R. Bell, S. Faulkner and M. D.
Ward, Dalton Trans., 2003, 808; (b) H.-B. Xu and H.-Y. Chao, Inorg.
Chem. Commun., 2007, 10, 1129.
22 Y. Hasegawa, Y. Kimura, K. Murakoshi, Y. Wada, J.-H. Kim, N.
Nakashima, T. Yamanaka and S. Yanagida, J. Phys. Chem., 1996, 100,
10201.
23 (a) G. E. Buono-Core, H. Li and B. Marciniak, Coord. Chem. Rev.,
1990, 99, 55; (b) S. W. Magennis, A. J. Ferguson, T. Bryden, T. S. Jones,
A. Beeby and I. D. W. Samuel, Synth. Met., 2003, 138, 463.
24 (a) M. D. Ward, Coord. Chem. Rev., 2007, 251, 1663; (b) C. M. G. dos
Santos, A. J. Harte, S. J. Quinn and T. Gunnlaugsson, Coord. Chem.
References
1 (a) J.-C. G. Bu¨nzli and C. Piguet, Chem. Soc. Rev., 2005, 34, 1048;
(b) S. V. Eliseeva and J.-C. G. Bu¨nzli, Chem. Soc. Rev., 2010, 39, 189;
(c) F.-F. Chen, Z.-Q. Chen, Z.-Q. Bian and C.-H. Huang, Coord. Chem.
Rev., 2010, 254, 991.
2 (a) H.-B. Xu, L.-X. Shi, E. Ma, L.-Y. Zhang, Q.-H. Wei and Z.-N.
Chen, Chem. Commun., 2006, 1601; (b) H.-B. Xu, L.-Y. Zhang, Z.-L.
Xie, E. Ma and Z.-N. Chen, Chem. Commun., 2007, 2744; (c) H.-B. Xu,
L.-Y. Zhang, Z.-H. Chen, L.-X. Shi and Z.-N. Chen, Dalton Trans.,
2008, 4664; (d) H.-B. Xu, X.-M. Chen, X.-L. Li, L.-Y. Zhang and Z.-N.
Chen, Cryst. Growth Des., 2009, 9, 569.
3 (a) D. Guo, C.-Y. Duan, F. Lu, Y. Hasegawa, Q.-J. Meng and S.
Yanagida, Chem. Commun., 2004, 1486; (b) Z. N. Chen, H.-B. Xu,
Rare Earth Coordination: Fundamentals and Application, Chap. 12 (ed.:
C. H. Huang), Wiley, 2010, p.473.
4 (a) S. I. Klink, H. Keizer and F. C. J. M. van Veggle, Angew. Chem., Int.
Ed., 2000, 39, 4319; (b) T. K. Ronson, T. Lazarides, H. Adams, S. J. A.
Pope, D. Sykes, S. Faulkner, S. J. Coles, M. B. Hursthouse, W. Clegg,
R. W. Harrington and M. D. Ward, Chem.–Eur. J., 2006, 12, 9299;
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 5549–5556 | 5555
©