C O M M U N I C A T I O N S
Scheme 2. NAP-Mediated IAD (Protocols A, B)a
under standard conditions to achieve the synthesis of 27, corre-
sponding to the substructure of S. natans polysaccharide14 (Scheme
4).
In conclusion, application of the novel naphthylmethyl ether-
mediated IAD toward the stereoselective construction of ꢀ-L-Rhap
was achieved with various acceptors in good yield. The complete
stereoselective synthesis of a trisaccharide, R-L-Rhap-(1f3)-ꢀ-L-
Rhap-(1f4)Glcp from S. natans, was successfully accomplished,
clearly suggesting the utility of NAP-IAD for ꢀ-L-rhamnopyrano-
sylation.
Acknowledgment. We thank Professor D. Crich (Wayne State
University) for directing our interest to ꢀ-rhamnosylation. This work
was partly supported by the Korea Research Foundation Grant
founded by the Korean Government (MOEHRD) (KRF-2006-352-
C00048), “Ecomolecular Science” and “Chemical Biology” pro-
grams in RIKEN, and a Grant-in-Aid for Encouragement of Young
Scientists from the Ministry of Education, Culture, Sports, Science,
and Technology (No. 18710196). We thank Dr. T. Chihara and his
staff for elementary analyses, and Ms. A. Takahashi for technical
assistance.
a Conditions: (a) DDQ, MS 4Å, CH2Cl2; (b) Protocol A for MA 10 and
11, (i) MeOTf, DTBMP, MS 4Å, (CH2Cl)2; (ii) TFA, CH2Cl2, then Ac2O,
DMAP, pyridine; Protocol B for MA 12, only (i). b Determined by 1H NMR
after isolation.
Scheme 3. Determination of Stereochemistry for 15 as endo
Supporting Information Available: Experimental procedures and
spectroscopic data for all new compounds. This material is available
References
(1) (a) Pozsgay, V. In Carbohydrates in Chemistry and Biology; Ernst, B.,
Hart, G. W., Sinay¨, P., Eds.; Wiley-VCH: Weinheim, Germany, 2000; Vol.
1, pp 319-343. (b) Gridley, J. J.; Osborn, H. M. I. J. Chem. Soc., Perkin
Trans. 1 2000, 1471–1491.
Scheme 4. Complete Stereoselective Synthesis of a Trisaccharide
(2) (a) Crich, D.; Sun, S. J. Org. Chem. 1996, 61, 4506–4507. (b) Crich, D.;
Sun, S. J. Am. Chem. Soc. 1998, 120, 435–436. (c) Kim, K. S.; Kim, J. H.;
Lee, Y. J.; Lee, Y. J.; Park, J. J. Am. Chem. Soc. 2001, 123, 8477–8481.
(d) Baek, J. Y.; Choi, T. J.; Jeon, H. B.; Kim, K. S. Angew. Chem., Int.
Ed. 2006, 45, 7436–7440.
(3) (a) Crich, D.; Yao, Q. Org. Lett. 2003, 5, 2189–2191. (b) Crich, D.; Yao,
Q. J. Am. Chem. Soc. 2004, 126, 8232–8236.
(4) Backinovsky, L. V.; Balan, N. F.; Shashkov, A. S.; Kochetkov, N. K.
Carbohydr. Res. 1980, 84, 225–235.
(5) Iversen, T.; Bundle, D. R. Carbohydr. Res. 1980, 84, C13–C15.
(6) Crich, D.; Vinod, A. U.; Picione, J. J. Org. Chem. 2003, 68, 8453–8458.
(7) Lichtenthaler, F. W.; Metz, T. Eur. J. Org. Chem. 2003, 3081–3093.
(8) Crich, D.; Picione, J. Org. Lett. 2003, 5, 781–784.
(9) Hodosi, G.; Kova´eˇ, P. J. Am. Chem. Soc. 1997, 119, 2335–2336.
(10) Cumpstey, I.; Fairbanks, A. J.; Redgrave, A. J. Tetrahedron 2004, 60, 9061–
9074.
(11) (a) Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172–
4173. (b) Xia, J.; Abbas, S. A.; Locke, R. D.; Piskorz, C. F.; Alderfer,
J. L.; Matta, K. L. Tetrahedron Lett. 2000, 41, 169–173.
(12) For the formation of naphthylidene acetal in vicinal diol from mono-NAP
ether, see: Boeckman, R. K., Jr.; Clark, T. J.; Shook, B. HelV. Chim. Acta
2002, 85, 4532–4560.
(13) Ishiwata, A.; Munemura, Y.; Ito, Y. Eur. J. Org. Chem. 2008, accepted.
(14) Takeda, M.; Nomoto, S.; Koizumi, J.-I. Biosci. Biotechnol. Biochem. 2002,
66, 1546–1551.
(15) Ogawa, K.; Yui, T.; Nakata, K.; Nitta, Y.; Kakuta, M.; Misaki, A. Biosci.
Biotechnol. Biochem. 1996, 60, 551–553.
(16) Chernyak, A. Y.; Weintraub, A.; Kochetkov, N. K.; Lindberg, A. A. Mol.
Immunol. 1993, 30, 887–893.
(17) Feng, L.; Senchenkova, S. N.; Wang, W.; Shashkov, A. S.; Liu, B.;
Shevelev, S. D.; Liu, D.; Knirel, Y. A.; Wang, L. Gene 2005, 355, 79–86.
(18) Chen, Y.; Bystricky, P.; AdeyeyeJ.; PanigrahiP.; Ali, A.; Johnson, J. A.;
Bush, C. A., Jr.; Stine, O. C. BMC Microbiol. 2007, 7, 20.
(19) Pozsgay, V.; Jennings, H. J. J. Org. Chem. 1988, 53, 4042–4052.
(20) For C1-H coupling constants in pyranoses, see: Bock, K.; Pedersen, C.
J. Chem. Soc., Perkin Trans. 2 1974, 293–297.
and the ring protons at C-2 and C-3 in the rhamnopyranoside
(Scheme 3).22
Having achieved the stereoselective synthesis of ꢀ-L-
Rhap(1f4)Glc (15), acceptors that correspond to Glc3-OH (16),
Man2-OH (17), Rha4-OH (18), and GlcNAc4-OH (19) were examined.
As expected, reactions with 8 gave desired products 20 [ꢀ-L-
Rhap(1f3)Glc],
21
[ꢀ-L-Rhap(1f2)Man],
22
[ꢀ-L-
Rhap(1f4)Rha], and 23 [ꢀ-L-Rhap(1f4)GlcN] in 64-71% yields
(Table 1).
With the aim of synthesizing bacterial glycans, regioselective
opening of the naphthylidene acetal was conducted to liberate the
3-OH of ꢀ-L-Rhap. DIBAL-H was suitable for this purpose, solely
giving 2-O-NAP ether 24 from 15. Subsequent R-L-rhamnopyra-
nosylation of 24 with trichloroacetimidate 2523 cleanly afforded
the desired trisaccharide 26 in high yield, which was deprotected
(21) Ito, Y.; Ohnishi, Y.; Ogawa, T.; Nakahara, Y. Synlett 1998, 1102–1104.
(22) 1H NMR NOE experiment: irradiation of δ 6.03 (NaphCH) enhanced δ
3.98 (2.3%, H-2Rha) and δ 4.10 (1.0%, H-3Rha).
(23) Zhang, J.; Mao, J.; Chen, H.; Cai, M. Tetrahedron: Asymmetry 1994, 5,
2283–2290.
JA801574Q
9
J. AM. CHEM. SOC. VOL. 130, NO. 20, 2008 6331