Jacobsen-type organocatalysts.9 The asymmetric reduction of
CdC double bonds is especially attractive, as up to two
stereogenic centers can be created. Unfortunately, the literature
procedures suffer either from poor environmental acceptability
due to the nature of the catalysts utilized or from the narrow
substrate range that limits the synthesis of desirable products.
As a result, there is considerable interest in developing alterna-
tive enzymatic procedures for the synthesis of optically active
nitro-compounds10 as starting blocks for chiral amines. Alkenes
activated by electron-withdrawing groups, e.g., ketones, alde-
hydes, carboxylic acids, and amides, are reduced stereoselec-
tively by various microorganisms, and the reductions are
catalyzed by flavoenzyme oxidoreductases [EC 1.3.1.x].10 The
family of enoate reductases has received particular attention,
and their potential value has provided the impetus to investigate
several enoate reductases from various aerobic11–13 and anaero-
bic14 microorganisms and plants.15,16
Highly Enantioselective Reduction of
ꢀ,ꢀ-Disubstituted Aromatic Nitroalkenes
Catalyzed by Clostridium sporogenes
Anna Fryszkowska,† Karl Fisher,‡ John M. Gardiner,† and
Gill M. Stephens‡,*
Manchester Interdisciplinary Biocentre, UniVersity of
Manchester, 131 Princess Street,
Manchester M1 7DN, United Kingdom
ReceiVed January 25, 2008
Although the reduction of nitroalkenes by various microor-
ganisms has been studied by several groups,16–33 highly enan-
tioselective examples of this reaction are limited to the reduction
of ꢀ,ꢀ-disubstituted nitroalkenes by baker’s yeast17,18 and the
recently reported reductases from Lycopersicon esculentum16
and Saccharomyces carlsbergensis.19 Contrarily, the reduction
of R,ꢀ-disubstituted nitroalkenes has shown only poor enantio-
(9) Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129, 8976–
8977.
(10) Stuermer, R.; Hauer, B.; Hall, M.; Faber, K. Curr. Opin. Chem. Biol.
2007, 11, 203–213.
This is the first report of the use of Clostridium sporogenes
extracts for enantioselective reduction of CdC double bonds
of ꢀ,ꢀ-disubstituted (1) and R,ꢀ-disubstituted nitroalkenes (3).
Crude enzyme preparations reduced aryl derivatives 1a-e and
1h, in 35-86% yield with g97% ee. Reduction of (E)- and
(Z)-isomers of 1c gave the same enantiomer of 2c (g99% ee).
In contrast, R,ꢀ-disubstituted nitroalkene 3a was a poor
substrate, yielding (S)-4a in low yield (10-20%), and the ee
(30-70% ee) depended on NADH concentration. An efficient
synthesis of a library of nitroalkenes 1 is described.
(11) Swiderska, M. A.; Stewart, J. D. J. Mol. Catal. B: Enzym. 2006, 42,
52–54.
(12) Chaparro-Riggers, J. F.; Rogers, T. A.; Vazquez-Figueroa, E.; Polizzi,
K. M.; Bommarius, A. S. AdV. Synth. Catal. 2007, 349, 1521–1531.
29.(13) Mu¨ller, A.; Hauer, B.; Rosche, B. Biotechnol. Bioeng. 2007, 98, 22–
(14) Rohdich, F.; Wiese, A.; Feicht, R.; Simon, H.; Bacher, A J. Biol. Chem.
2001, 276, 5779–5787.
(15) Stueckler, C.; Hall, M.; Ehammer, H.; Pointner, E.; Kroutil, W.;
Macheroux, P.; Faber, K. Org. Lett. 2007, 9, 5409–5411.
(16) Hall, M.; Stueckler, C.; Kroutil, W.; Macheroux, P.; Faber, K. Angew.
Chem., Int. Ed. 2007, 46, 3934–3937.
(17) Ohta, H.; Kobayashi, N.; Ozaki, K. J. Org. Chem. 1989, 54, 1802–
1804.
(18) Ohta, H.; Ozaki, K.; Tsuchihashi, G.-I. Chem. Lett. 1987, 1, 191–192.
(19) Swiderska, M. A.; Stewart, J. D. Org. Lett. 2006, 8, 6131–6133.
(20) Kawai, Y.; Inaba, Y.; Tokitoh, N. Tetrahedron: Asymmetry 2001, 12,
309–318.
Nitroalkanes are important intermediates in organic synthesis,
mainly due to their easy conversion into the corresponding
amines, aldehydes, carboxylic acids, or denitrated compounds.1,2
Chiral nitroalkanes can be obtained by asymmetric conjugate
addition to nitroalkenes3–6 or enantioselective conjugate reduc-
tion of nitroalkenes using chiral transition metal catalysts7,8 or
(21) Kawai, Y.; Inaba, Y.; Hayashi, M.; Tokitoh, N. Tetrahedron Lett. 2001,
42, 3367–3368.
(22) Sakai, K.; Nakazawa, A.; Kondo, K.; Ohta, H. Agric. Biol. Chem. 1985,
49, 2331–2335.
(23) Korbekandi, H.; Mather, P.; Gardiner, J.; Stephens, G. Enzyme Microb.
Technol. 2007, 42, 308–314.
(24) Takeshita, M.; Yoshida, S.; Kohno, Y. Heterocycles 1994, 37, 553–
562.
† Manchester Interdisciplinary Biocentre and the School of Chemistry.
‡ Manchester Interdisciplinary Biocentre and the School of Chemical Engi-
neering and Analytical Science.
(1) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York,
2001.
(25) Shaw, P. D. Biochemistry 1967, 6, 2253–2260.
(26) Mori, A.; Ishiyama, I.; Akita, H.; Suzuki, K.; Mitsuoka, T.; Oishi, T.
Chem. Pharm. Bull. 1990, 38, 3449–3451.
(27) Bak, R. R.; McAnda, A. F.; Smallridge, A. J.; Trewhella, M. A. Aust.
J. Chem. 1996, 49, 1257–1260.
(2) Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017–1047.
(3) Mampreian, D. M.; Hoveyda, A. H. Org. Lett. 2004, 6, 2829–2832.
(4) Cote, A.; Lindsay, V. N. G.; Charette, A. B. Org. Lett. 2007, 9, 85–87.
(5) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877–
1894.
(28) McAnda, A. F.; Roberts, K. D.; Smallridge, A. J.; Ten, A.; Trewhella,
M. A. J. Chem. Soc., Perkin Trans. 1 1998, 501, 504.
(29) Meah, Y.; Massey, V. Proc. Natl. Acad. Sci. 2000, 97, 10733–10738.
(30) Kohli, R. M.; Massey, V. J. Biol. Chem. 1998, 273, 32763–32770.
(31) Messiha, H. L.; Munro, A. W.; Bruce, N. C.; Barsukov, I.; Scrutton,
N. S. J. Biol. Chem. 2005, 280, 10695–10709.
(6) Wu, J.; Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2005,
127, 4584–4585.
(32) Kataoka, M.; Kotaka, A.; Hasegawa, A.; Wada, M.; Yoshizumi, A.;
Nakamori, S.; Shimizu, S. Biosci. Biotechnol. Biochem. 2002, 66, 2651–2657.
(33) Kataoka, M.; Kotaka, A.; Thiwthong, R.; Wada, M.; Nakamori, S.;
Shimizu, S. J. Biotechnol. 2004, 114, 1–9.
(7) Czekelius, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2003, 42, 4793–
4795.
(8) Czekelius, C.; Carreira, E. M. Org. Lett. 2005, 6, 4575–4577.
10.1021/jo800124v CCC: $40.75
Published on Web 05/02/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 4295–4298 4295