ORGANIC
LETTERS
2011
Vol. 13, No. 23
6316–6319
Enantioselective Boronate Additions to
N-Acyl Quinoliniums Catalyzed by
Tartaric Acid
Tomohiro Kodama, Philip N. Moquist, and Scott E. Schaus*
Department of Chemistry and Center for Chemical Methodology and Library
Development (CMLD-BU), Life Sciences and Engineering Building, Boston University,
24 Cummington Street, Boston, Massachusetts 02215, United States
Received October 24, 2011
ABSTRACT
Tartaric acid catalyzes the asymmetric addition of vinylboronates to N-acyl quinoliniums, affording highly enantioenriched dihydroquinolines.
The catalyst serves to activate the boronate through a ligand-exchange reaction and generates the N-acyl quinolinium in situ from the stable
quinoline-derived N,O-acetal.
Nucleophilic addition to quinolines is an effective
method to synthesize dihydroquinolines, useful synthons in
the construction of biologically active alkaloids.1 Shibasaki
reported the first catalytic, enantioselective addition to
quinoline, a Reissert-type reaction with trimethylsilylcya-
nide and a bifunctional phosphine-BINOLate catalyst.2
Alexakis performed a direct lithiation of quinolines in the
presence of a chiral diether catalyst.3 Recently, Takemoto
reported a Petasis-type reaction of quinolines with boronic
acids and a bifunctional thiourea catalyst.4 All of these
reactions require an in situ formation of an N-acyl quino-
linium generated by the addition of a chloroformate to
the quinoline electrophile. We hoped to utilize 2-ethoxy-
1-ethoxycarbonyl-1,2-dihydroquinolines (EEDQs) as
stable N-acyl quinolinium precursors to avoid the use
of chloroformates.5 Although EEDQs are reactive part-
ners in Petasis-like reactions,6 only one enantioselective
transformation of EEDQs has been reported.6c Herein,
we report the use of tartaric acid as a catalyst to perform
highly enantioselective additions of boronates to N-acyl
quinoliniums to form chiral dihydroquinolines.
Many of the seminal developments of asymmetric synthe-
sis and catalysis utilize tartaric acid derivatives as chiral
auxiliaries or catalysts.7 The Sharpless asymmetric epoxida-
tion,8 asymmetric allylborations,9 and asymmetric DielsÀ
Alder reactions10 are just a few examples of highly utilized
(5) (a) Belleau, B.; Martel, R.; Lacasse, G.; Menard, M.; Weinberg,
N. L.; Perron, Y. G. J. Am. Chem. Soc. 1968, 90, 823–824. (b) Belleau, B.;
Malek, G. J. Am. Chem. Soc. 1968, 90, 1651–1652. (c) Zacharie, B.;
Connolly, T. P.; Penney, C. L. J. Org. Chem. 1995, 60, 7072–7074.
(d) Hyun, M. H.; Na, M. S.; Min, C.-S. J. Chromatogr. A 1996, 732, 209–
214. (e) Hyun, M. H.; Kang, M. H.; Han, S. C. Tetrahedron Lett. 1999,
40, 3435–3438.
(6) (a) Batey, R. A.; MacKay, D. B.; Santhakumar, V. J. Am. Chem.
Soc. 1999, 121, 5075–5076. (b) Chang, Y. M.; Lee, S. H.; Nam, M. H.;
Cho, M. Y.; Park, Y. S.; Yoon, C. M. Tetrahedron Lett. 2005, 46, 3053–
3056. (c) Graham, T. J. A.; Shields, J. D.; Doyle, A. G. Chem. Sci. 2011,
2, 980–984.
(1) (a) Michael, J. P. Nat. Prod. Rep. 1995, 12, 77–89. (b) Rakotosou,
H.; Fabre, N.; Jacquemond-Collet, I.; Hannedouche, S.; Fouraste, I.;
Moulis, C. Planta Med. 1998, 64, 762–763. (c) Jacquemond-Collet, I.;
Hannedouche, S.; Fouraste, I.; Moulis, C. Phytochemistry 1999, 51,
1167–1169. (d) Houghton, P. J.; Woldemariam, T. Z.; Watanabe, Y.;
Yates, M. Planta Med. 1999, 65, 250–256. (e) Riva, R.; Guanti, G. Chem.
Commun. 2000, 36, 1171–1172.
(7) Gawronski, J.; Gawronski, K. In Tartaric and Malic Acids in
Synthesis: A Source Book of Building Blocks, Ligands, Auxiliaries and
Resolving Agents; Wiley-VCH: Weinheim, 1999.
(2) Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki, M. J. Am.
Chem. Soc. 2000, 122, 6327–6328.
(3) Amiot, F.; Cointeaux, L.; Silve, E. J.; Alexakis, A. Tetrahedron
2004, 60, 8221–8231.
(4) Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am. Chem. Soc. 2007,
129, 6686–6687.
(8) (a) Johnson, R. A.; Sharpless, K. B. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991;
Vol. 7, Chapter 3.2. (b) Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1–
300.
r
10.1021/ol2028702
Published on Web 11/08/2011
2011 American Chemical Society