Journal of the American Chemical Society
Page 4 of 5
Soc. 2012, 134, 11900. (c) Williams, C. M.; Johnson, J. B.;
Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.
(4) Maag, H.Prodrugs of Carboxylic Acids; Springer: New
York, 2007.
(14) (a) Hoberg, H.; Apotecher, B. J. Organomet. Chem. 1984,
270 , c15. (b) Walther, D.; Dinjus, E.; Görls, H.; Sieler, J.;
Lindqvist, O.; Andersen, L. J. Organomet. Chem. 1985,
286, 103.
1
2
3
4
5
6
7
8
9
(5) For recent catalytic carboxylations of olefins via single CO2
insertions in the absence of organometallics: (a) Ye, J. H.;
Miao, M.; Huang, H.; Yan, S. S.; Yin, Z. B.; Zhou, W. J.;
Yu, D. G. Angew. Chem. Int. Ed. 2017, 56, 15416. (b)
Gaydou, M.; Moragas, T.; Juliá-Hernández, F.; Martin, R. J.
Am. Chem. Soc. 2017, 139, 12161. (c) Seo, H.; Liu, A.;
Jamison, T. F. J. Am. Chem. Soc. 2017, 139, 13969. (d)
Yatham, V. R.; Shen, Y.; Martin, R. Angew. Chem. Int. Ed.
2017, 56, 10915. (e) Murata, K.; Numasawa, N.;
Shimomaki, K.; Takaya, J.; Iwasawa, N. Chem. Commun.
2017, 53, 3098. (f) Wu, L.; Liu, Q.; Fleischer, I.; Jackstell,
R.; Beller, M. Nat. Commun. 2014, 5, 3091. (g) Ostapowicz,
T. G.; Schmitz, M.; Krystof, M.; Klankermayer, J.; Leitner,
W. Angew. Chem. Int. Ed. 2013, 52, 12119.
(6) For an isolated Ni-catalyzed 1,2-dicarboxylation of end-
capped silyl allenes requiring excess amounts of DBU and
pyrophoric Et2Zn as reducing agent: Takimoto, M.; Kawa-
mura, M.; Mori, M.; Sato, Y. Synlett 2005, 2019. For a cata-
lytic route to maleic anhydrides from alkyne derivatives:
Fujihara, T.; Horimoto, Y.; Mizoe, T.; Sayyed, F. B.; Tani,
Y.; Terao, J.; Sakaki, S.; Tsuji, Y. Org. Lett. 2014, 16, 4960.
(7) For recent references: (a) Juliá-Hernández, F.; Moragas, T.;
Cornella, J.; Martin, R. Nature 2017, 545, 84. (b) van Ge-
mmeren, M.; Börjesson, M.; Tortajada, A.; Sun, S.-Z.; Oku-
ra, K.; Martin, R. Angew. Chem. Int. Ed. 2017, 56, 6558. (c)
Moragas, T.; Gaydou, M.; Martin, R. Angew. Chem. Int. Ed.
2016, 55, 5053. (d) Börjesson, M.; Moragas, T.; Martin, R.
J. Am. Chem. Soc. 2016, 138, 7504. (e) refs. 5b and 5d.
(8) For seminal studies that required stoichiometric amounts of
nickel complexes: (a) Hoberg, H.; Schaefer, D.; Oster, B.
W. J. Organomet. Chem. 1984, 266, 313. (b) Behr, A.;
Kanne, U. J. Organomet. Chem. 1986, 317, 41. (c) Takimo-
to, M.; Mori, M. J. Am. Chem. Soc. 2001, 123, 2895.
(9) (a) Van de Vyver, S.; Román-Leshkov, Y. Catal. Sci. Tech-
nol. 2013, 3, 1465. (b) Musser, M. T. In Ullmann’s Ency-
clopedia of Industrial Chemistry; Wiley-VCH Verlag
GmbH & Co. KGaA: Weinheim, Germany, 2000; pp 1–11.
(10) For selected references: (a) Thullen, S. M.; Rovis, T. J. Am.
Chem. Soc. 2017, 139, 15504. (b) Sardini, S. R.; Brown, M.
K. J. Am. Chem. Soc. 2017, 139, 9823. (c) Yang, X. H.;
Dong, V. M. J. Am. Chem. Soc. 2017, 139, 1774. (d) Yang,
X. H.; Lu, A.; Dong, V. M. J. Am. Chem. Soc. 2017, 139,
14049. (e) McCammant, M. S.; Sigman, M. S. Chem. Sci.
2015, 6, 1355. (f) Saito, N.; Kobayashi, A.; Sato, Y. Angew.
Chem. Int. Ed. 2012, 51, 1228, and citations therein.
(11) While this publication was under preparation, an elegant
Cu-catalyzed hydroxymethylation of 1,3-dienes via single
CO2 insertion was developed: Gui, Y. –Y.;Hu, N.; Chen, X.
–W.; Liao, L. –L.; Ju, T.; Ye, J. –H.; Zhang, Z.; Li, J.; Yu,
D. –G. J. Am. Chem. Soc. 2017, 139, 17011.
(15) For details, see Supporting Information.
(16) Ammonium salts have been reported to speed up the reduc-
tion of nickel by Mn: (a) Iyoda, M.; Otsuka, H.; Sato, K.;
Nisato, N.; Oda, M. Bull. Chem. Soc. Jpn. 1990, 63, 80. (b)
Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. J. Am.
Chem. Soc. 2012, 134, 9106.
(17) For selected references in which ortho-substituents on the
nitrogen ligand exerted a critical influence on carboxylation
reactions, see: (a) ref. 7. (b) Nogi, K.; Fujihara, T.; Terao, J.;
Tsuji, Y. J. Org. Chem. 2015, 80, 11618.
(18) The use of organic reductants or Me2Zn instead of Mn as
reducing agents led to no formation of 2a. See ref 15.
(19) The mass balance accounts for unreacted starting material
and competitive polymerization of the 1,3-diene. Notably,
no reaction took place under CO2 pressure (10 bars).
(20) Regardless of whether aromatic or aliphatic dienes were
employed, Z:E selectivities ranging from 1.5:1 to 2.5:1 were
obtained. Competitive olefin isomerization was prevented
by conducting the hydrogenolysis with B2(OH)4-H2O:
Cummings, S. P.; Le, T.-N.; Fernandez, G. E.; Quiambao,
L. G.; Stokes, B. J. J. Am. Chem. Soc. 2016, 138, 6107.
(21) Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH
Verlag GmbH: Weinheim, Germany, 2008.
(22) Not even traces of benzoic acid from CO2 insertion into the
C–Sn bond were observed in the crude mixtures. For the di-
rect carboxylation of organometallic reagents: Correa, A.;
Martin, R. Angew. Chemie Int. Ed. 2009, 48, 6201.
(23) For selected reviews dealing with C–O bond-cleavage of
aryl esters, see: (a) Zarate, C.; Van Gemmeren, M.; Somer-
ville, R. J.; Martin, R. Adv. Organomet. Chem. 2016, 66,
143. (b) Su, B.; Cao, Z. –C.; Shi, Z. –J. Acc. Chem. Res.
2015, 48, 886. (c) Rosen, B. M.; Quasdorf, K. W.; Wilson,
D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec V.
Chem. Rev. 2011, 111, 1346.
(24) Weissermel, K.; Arpe, H. In Industrial Organic Chemistry;
Wiley-VCH Verlag GmbH: Weinheim, Germany, 2007;
105.
(25) Although tentative, these results can be interpreted on the
basis of a subtle influence on both steric and electronic ef-
fects on the reactivity of π-allyl complex I (Scheme 1).
(26) This finding is in excellent agreement with conclusions
previously reached by Sato with stoichiometric amounts of
Ni complexes and pyrophoric reagents. See ref. 8c.
(27) Such interpretation was invoked by Jarvo in non-related
stereospecific Ni-catalyzed reactions. See: Yonova, I. M.;
Johnson, A. G.; Osborne, C. A.; Moore, C. E.; Morrissette,
N. S.; Jarvo, E. R. Angew. Chemie Int. Ed. 2014, 53, 2422.
(28) Control experiments revealed that the Ni(0)/L7 combination
isomerizes the Z isomer into the E isomer. No reaction or an
erosion in yield was observed when Ni-1 or Ni(COD)2/L7
were exposed to 1a without Mn. See ref 15.
(29) Nett, A. J.; Zhao, W.; Zimmerman, P. M.; Montgomery, J.
J. Am. Chem. Soc. 2015, 137, 7636.
(30) In the absence of L7, Mn or TBAB, low yields of monocar-
boxylic acids were observed in the crude mixtures.
(31) Nickel (I) species have been reported to rapidly react with
CO2: Menges, F. S.; Craig, S. M.; Tötsch, N.; Bloomfield,
A.; Ghosh, S.; Krüger, H. J.; Johnson, M. A. Angew.
Chemie Int. Ed. 2016, 55, 1282. See ref 15 for control ex-
periments with radical inhibitors.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Selected references: (a) Sharif, M.; Jackstell, R.; Dastgir, S.;
Al-Shihi, B.; Beller, M. ChemCatChem, 2017, 9, 542. (b)
Bruijnincx, P. C. A.; Jastrzebski, R.; Hausoul, P. J. C.;
Gebbink, R. J. M. K.; Weckhuysen, B. M. Top. Organomet.
Chem. 2012, 39, 45. (c) Hoberg, H.; Gross, S.; Milchereit,
A. Angew. Chem Int. Ed. 1987, 26, 571.
(13) (a) Doi, R.; Abdullah, I.; Taniguchi, T.; Saito, N.; Sato, Y.
Chem. Commun. 2017, 53, 7720. (b) Wang, X.; Nakajima,
M.; Martin, R. J. Am. Chem. Soc. 2015, 137, 8924. (c) Li,
S.; Yuan, W.; Ma, S. Angew. Chem. Int. Ed. 2011, 50, 2578.
(d) Fujihara, T.; Xu, T.; Semba, K.; Terao, J.; Tsuji, Y. An-
gew. Chem. Int. Ed. 2011, 50, 523.
ACS Paragon Plus Environment