C O M M U N I C A T I O N S
Scheme 1. Application of an Organocatalytic, Asymmetric Transannular Aldol Reaction in the Total Synthesis of (+)-Hirsutene
(c 0.1 M, hexane) in 87% yield.24 The synthetic material had
spectral properties fully consistent with those reported in the
literature.15,21
(6) Pidathala, C.; Hoang, L.; Vignola, N.; List, B. Angew. Chem. 2003, 115,
2891.
(7) For examples of nonasymmetric catalysis and reagent-based asymmetric
transannular aldolizations see: (a) Knopff, O.; Kuhne, J.; Fehr, C. Angew.
Chem., Int. Ed. 2007, 46, 1307. (b) Inoue, M.; Lee, N.; Kasuya, S.; Sato,
T.; Hirama, M.; Moriyama, M.; Fukuyama, Y. J. Org. Chem. 2007, 72,
3065.
In conclusion, we have described an asymmetric, catalytic transan-
nular aldol reaction that provides polycyclic products in good yields
(53-84%) and high enantioselectivities (er ) 95:5-98:2) for 1,4-
cyclooctanediones. Further work to elucidate the observed fluorine
effect is underway. The enantioselectivities for larger macrocyclic
diones currently participating in this proline-derived-catalyzed reaction
are, at the moment, only moderate (41-82% ee) offering the prospect
for further improvement. The potential of our methodology for natural
product synthesis was illustrated with the shortest asymmetric total
synthesis of (+)-hirsutene reported to date. Our observations contribute
to a further advancement of catalytic, asymmetric transannular
transformations and complement a recently discovered transannular
Diels-Alder reaction by Jacobsen et al.25
Acknowledgment. We thank Linh Hoang for her contributions
at the early stage of this project (2001). Generous support by the Max-
Planck-Society, the DFG (SPP1179, Organocatalysis), Novartis (Young
Investigator Award to B.L.), AstraZeneca (Award in Organic Chem-
istry to B.L.), and the Fond der Chemischen Industrie is gratefully
acknowledged. We also thank our GC and NMR departments for their
support.
(8) See Supporting Information.
(9) Determined on the basis of comparison with 24.
(10) The S value was calculated to be 11.7 using the KinRes program, see :
Goodman, J. M.; Ko¨hler, A.-K.; Alderton, S. C. M. Tetrahedron Lett. 1999,
40, 8715.
(11) Nozoe, S.; Furukawa, J.; Sankawa, U.; Shibata, S. Tetrahedron Lett. 1976,
17, 195.
(12) Mehta, G.; Reddy, D. S. J. Chem. Soc., Perkin Trans. 1 2001, 1, 1153.
and references cited therein.
(13) Schuda, P. F.; Phillips, J. L.; Morgan, T. M. J. Org. Chem. 1986, 51, 2742.
and references cited therein.
(14) For reviews on syntheses of triquinane natural products see: (a) Mehta,
G.; Srikrishna, A. Chem. ReV. 1997, 97, 671. (b) Singh, V.; Thomas, B.
Tetrahedron 1998, 54, 3647.
(15) For reports of asymmetric total syntheses of hirsutene see: (a) Hua, D. H.;
Venkataraman, S.; Sinai-Zingde, G. J. Am. Chem. Soc. 1985, 107, 4088.
(b) Weinges, K.; Reichert, H.; Huber-Patz, U.; Irngartinger, H. Liebegs
Ann. Chem. 1993, 403. (c) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.;
Jolliffe, K. A. Tetrahedron 2004, 60, 535.
(16) For reports of asymmetric formal syntheses of hirsutene see: (a) Castro,
J.; Sorensen, H.; Riera, A.; Morin, C.; Moyano, A.; Pericas, M. A.; Greene,
A. E. J. Am. Chem. Soc. 1990, 112, 9388. (b) Inoue, T.; Hosomi, K.; Araki,
M.; Nishide, K.; Node, M. Tetrahedron: Asymmetry 1995, 6, 31. (c) Anger,
T.; Graalmann, O.; Schro¨der, H.; Gerke, R.; Kaiser, U.; Fitjer, L.;
Noltemeyer, M. Tetrahedron 1998, 54, 10713. (d) Leonard, J.; Bennett,
L.; Mahmood, A. Tetrahedron Lett. 1999, 40, 3965. (e) Singh, V.;
Vedantham, P.; Sahu, P. K. Tetrahedron Lett. 2002, 43, 519. (f) Hu, Q.-
Y.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 13708.
(17) Berglund, R. A.; Braish, T. F.; Jakubowski, J. A.; Fuchs, P. L. Bioorg.
Med. Chem. Lett. 1991, 1, 649.
Supporting Information Available: Experimental procedures, com-
pound characterization, NMR-spectra, and GC traces. This material is
(18) Chavan, S. P.; Ethiraj, K. S. Tetrahedron Lett. 1995, 36, 2281.
(19) Makhey, D.; Li, D.; Zhao, B.; Sim, S.-P.; Li, T.-K.; Liu, A.; Liu, L. F.; La
Voie, E. J. Bioorg. Med. Chem. 2003, 11, 1809.
(20) Del Zotto, A.; Baratta, W.; Verardo, G.; Rigo, P. Eur. J. Org. Chem. 2000,
2795.
References
(21) Confirmed by 1H and 13C NMR comparison with the known compound,
see : Jiao, L.; Yuan, C.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 4421.
(22) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am. Chem. Soc.
2003, 125, 2475.
(1) Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim,
Germany, 2004.
(2) Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int. Ed. 2000, 39, 1352.
(3) (a) Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003. (b) Yoshikawa,
N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem.
Soc. 1999, 121, 4168.
(23) Iyoda, M.; Kushida, T.; Kitami, S.; Oda, M. J. Chem. Soc., Chem. Commun.
1986, 1049.
(24) Fitjer, L.; Quabeck, U. Synth. Commun. 1985, 15, 855.
(25) Balskus, E. P.; Jacobsen, E. N. Science 2007, 317, 1736.
(4) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. ReV. 2007, 107,
5471.
(5) (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl. 1971,
10, 496. (b) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615.
JA8024164
9
J. AM. CHEM. SOC. VOL. 130, NO. 21, 2008 6739