N. P. Pera et al. / Tetrahedron Letters 49 (2008) 2820–2823
2823
Angew. Chem., Int. Ed. 2007, 46, 2199–2202; (e) Miller, K. A.; Martin,
S. F. Org. Lett. 2007, 9, 1113–1116.
8. Lindsell, W. E.; Preston, P. N.; Rettie, A. B. Carbohydr. Res. 1994,
254, 311–316.
the product. Reaction with this alkene proceeded well, pro-
viding 16 in a relatively good yield of 55%, as a mixture of
cis- and trans-isomers.
In summary, we have reported the first examples of
intermolecular Pauson–Khand reactions involving an
alkyne moiety appended to a carbohydrate moiety in its
cyclized form. Cyclic alkenes gave the best results, afford-
ing the desired products in moderate to good yields, while
allyl benzene as well as the sensitive 2,3-dihydrofuran gave
less than satisfactory results. The products formed consti-
tute useful scaffolds for further derivatization and investi-
gation as potential galectin-3 inhibitors.
9. (a) Marco-Contelles, J. Tetrahedron Lett. 1994, 35, 5059–5062; (b)
Marco-Contelles, J. J. Org. Chem. 1996, 61, 7666–7670; (c) Marco-
Contelles, J.; Ruiz-Caro, J. J. Org. Chem. 1999, 64, 8302–8310; (d)
Marco-Contelles, J.; de Opazo, E. J. Carbohydr. Chem. 2002, 21, 201–
218.
10. (a) Naz, N.; Al-Tel, T. H.; Al-Abed, Y.; Voelter, W. Tetrahedron Lett.
1994, 46, 8581–8582; (b) Naz, N.; Al-Tel, T. H.; Voelter, W.; Ficker,
R.; Hiller, W. J. Org. Chem. 1996, 61, 3250–3255.
11. Borodkin, V. S.; Shpiro, N. A.; Azov, V. A.; Kochetkov, N. K.
Tetrahedron Lett. 1996, 37, 1489–1492.
12. Isobe, M.; Takai, S. J. Orgnomet. Chem. 1999, 589, 122–125.
13. Leeuwenburgh, M. A.; Appeldoorn, C. C. M.; van Hooft, P. A. V.;
Overkleeft, H. S.; van der Marel, G. A.; van Boom, J. H. Eur. J. Org.
Chem. 2000, 873–877.
Acknowledgements
14. Hotha, S.; Maurya, S. K.; Gurjar, M. K. Tetrahedron Lett. 2005, 46,
5329–5332.
15. (a) Kubota, H.; Lim, J.; Depew, K. M.; Schreiber, S. L. Chem. Biol.
2002, 9, 265–276; for a related report, see: (b) Hotha, S.; Tripathi, A.
J. Comb. Chem. 2005, 7, 968–976.
We thank the Swedish Foundation for Strategic
Research (SSF) and Chalmers University of Technology
for financial support.
Supplementary data
16. Areces, P.; Carrasco, E.; Plumet, J. Arkivoc 2005, ix, 165–174.
17. Areces, P.; Carrasco, E.; Plumet, J. J. Carbohydr. Chem. 2006, 25,
197–202.
18. For a review on the derivatization of carbohydrate scaffolds, see:
Cipolla, F.; Peri, L.; La Ferla, B.; Redaelli, C.; Nicotra, F. Curr. Org.
Synth. 2005, 2, 153–173.
Supplementary data associated with this article can be
19. (a) Salameh, B. A.; Sundin, A.; Leffler, H.; Nilsson, U. J. Bioorg.
Med. Chem. 2006, 14, 1215–1220; (b) Salameh, B. A.; Leffler, H.;
Nilsson, U. J. Bioorg. Med. Chem. Lett. 2005, 15, 3344–3346; (c)
Cumpstey, I.; Sundin, A.; Leffler, H.; Nilsson, U. J. Angew. Chem.,
Int. Ed. 2005, 44, 5110–5112; (d) So¨rme, P.; Arnoux, P.; Kahl-
Knutsson, B.; Leffler, H.; Rini, J. M.; Nilsson, U. J. J. Am. Chem.
Soc. 2005, 127, 1737–1743; (e) So¨rme, P.; Qian, Y.; Nyholm, P.-G.;
Leffler, H.; Nilsson, U. J. ChemBioChem 2002, 3, 183–189.
20. Typical reaction procedure for the thermal Pauson–Khand reaction
(Table 2, entry 1): Complex 6 (100 mg, 0.152 mmol) and norborna-
diene (80 ll, 0.758 mmol) were dissolved in toluene in a sealable
reaction tube under an argon atmosphere. The tube was sealed with a
cap and heated to 110 °C. After 18 h, the solvent was evaporated and
the crude residue purified by flash chromatography, eluting with
toluene/ethyl acetate 2:1, affording 69 mg of 9 as a brown oil (85%
yield). All the compounds were characterized by NMR, IR and
References and notes
1. For some recent reviews on the Pauson–Khand reaction, see: (a)
Omae, I. Appl. Organomet. Chem. 2007, 21, 318–344; (b) Strubing, D.;
Beller, M. Top. Organomet. Chem. 2006, 18, 165–178; (c) Perez-
Castells, J. Top. Organomet. Chem. 2006, 207–257; (d) Gibson, S. E.;
Mainolfi, N. Angew. Chem., Int. Ed. 2005, 44, 3022–3037; (e) Bonaga,
L. V. R.; Krafft, M. E. Tetrahedron 2004, 60, 9795–9833; (f) Blanco-
Urgoiti, J.; Anorbe, L.; Perez-Serrano, L.; Domınguez, G.; Perez-
˜
Castells, J. Chem. Soc. Rev. 2004, 33, 32–42; (g) Alcaide, B.;
Almendros, P. Eur. J. Org. Chem. 2004, 3377–3383; (h) Rodrıguez
Rivero, Marta.; Adrio, J.; Carretero, J. C. Eur. J. Org. Chem. 2002,
2881–2889; (i) Brummond, K. M.; Kent, J. L. Tetrahedron 2000, 56,
3263–3283; (j) Fletcher, A. J.; Christie, S. D. R. J. Chem. Soc., Perkin
Trans. 1 2000, 1657–1668.
¨
´
˜
´
´
´
´
1
HRMS; see Supplementary material. Data for 9: 85%, brown oil; H
2. Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem.
Soc., Perkin Trans. 1 1973, 977–981.
NMR (400 MHz, CDCl3) d 7.33 (app br s, 1H), 6.27 (app br s, 1H),
6.19 (app br s, 1H), 5.44 (app br s, 1H), 5.07 (app t, J = 9.0 Hz, 1H),
4.33 (d, J = 8.0 Hz, 1H), 4.27 (d, J = 12.6 Hz, 1H), 4.20–4.10 (m, 2H),
4.05 (d, J = 13.2 Hz, 1H), 3.82 (t, J = 6.6 Hz, 1H), 3.55 (br d,
J = 10.0 Hz, 1H), 3.49 (s, 3H), 2.89 (br s, 1H), 2.75 (br s, 1H), 2.68 (br
s, 1H), 2.30 (br s, 1H), 2.13–2.04 (m, 9H), 1.38 (d, J = 9.2 Hz, 1H),
1.25–1.18 (m, 1H); 13C NMR (100 MHz, CDCl3) d 209.33, 170.73,
170.48, 169.79, 161.76, 138.71, 137.28, 137.23, 102.21, 78.70, 70.95,
70.91, 66.36, 64.09, 61.90, 57.08, 53.26, 48.46, 43.86, 43.13, 41.42,
3. (a) Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetrahedron Lett.
1990, 31, 5289–5292; (b) Jeong, N.; Chung, Y. K.; Lee, B. Y.; Lee, S.
H.; Yoo, S.-E. Synlett 1991, 204–206; for the use of polymer-
supported N-oxides, see: (c) Kerr, W. J.; Lindsay, D. M.; Watson, S.
P. Chem. Commun. 1999, 2551–2552; (d) Brown, D. S.; Campbell, E.;
Kerr, W. J.; Lindsay, D. M.; Morrison, A. J.; Pike, K. G.; Watson, S.
P. Synlett 2000, 1573–1576.
4. Sugihara, R.; Yamada, M.; Ban, H.; Yamaguchi, M.; Kaneko, C.
Angew. Chem., Int. Ed. 1997, 36, 2801–2804.
5. Sugihara, T.; Yamada, M.; Yamaguchi, M.; Nishizawa, M. Synlett
1999, 771–773.
6. For reviews on the catalytic Pauson–Khand reaction, see: (a) Shibata,
T. Adv. Synth. Catal. 2006, 348, 2328–2336; (b) Gibson, S. E.;
Stevenazzi, A. Angew. Chem., Int. Ed. 2003, 42, 1800–1810.
7. For some recent examples, see: (a) Kozaka, T.; Miyakoshi, N.;
Mukai, C. J. Org. Chem. 2007, 72, 10147–10154; (b) Madu, C. E.;
Lovely, C. J. Org. Lett. 2007, 9, 4697–4700; (c) Honda, T.; Kaneda,
K. J. Org. Chem. 2007, 2, 6541–6547; (d) Min, S.-J.; Danishefsky, S. J.
21.21, 21.18, 21.00; IR (neat) 2254, 1746, 1699, 1231, 908, 734 cmꢁ1
;
21
½aꢂD +15.3 (c 0.014, CH2Cl2); HRMS (ES+) m/z calcd for
C
24H30O10Na [M+Na]+ 501.1737, found 501.1729.
21. Schore, N. E. In Comprehensive Organic Synthesis; Trost, B. M., Ed.;
Pergamon: Oxford, 1991; Vol. 5, p 1037.
22. Smit, W. A.; Kireev, S. L.; Nefedov, O. M.; Tarasov, V. A.
Tetrahedron Lett. 1989, 30, 4021–4024.
23. Crivello, J. V.; Rajaraman, S. K. J. Polym. Sci. A: Polym. Chem.
1997, 35, 1579–1591.
24. Kerr, W. J.; McLaughlin, M.; Pauson, P. L.; Robertson, S. M. J.
Organomet. Chem. 2001, 630, 104–117.