ACS Catalysis
Page 6 of 18
S.; Wu, W.; Jiang, H. Recent Advances in Pd-Catalyzed Cross-
Coupling Reaction in Ionic Liquids. Eur. J. Org. Chem. 2018,
1284–1306.
REFERENCES
1
2
3
4
5
6
7
8
(1) (a) Torborg, C.; Beller, M. Recent Applications of
Palladium-Catalyzed Coupling Reactions in the Pharmaceutical,
Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal.
2009, 351, 3027–3043. (b) Magano, J.; Dunetz, J. R. Large-Scale
Applications of Transition Metal-Catalyzed Couplings for the
Synthesis of Pharmaceuticals. Chem. Rev. 2011, 111, 2177–
2250. (c) Biajoli, A. F. P.; Schwalm, C. S.; Limberger, J.; Claudino,
T. S.; Monteiro, A. L. Recent Progress in the Use of Pd-Catalyzed
C–C Cross-Coupling Reactions in the Synthesis of
Pharmaceutical Compounds. J. Braz. Chem. Soc. 2014, 25,
2186–2214. (d) Xu, S.; Kim, E. H.; Wei, A.; Negishi, E.-i. Pd- and
Ni-Catalyzed Cross-Coupling Reactions in the Synthesis of
Organic Electronic Materials Sci. Technol. Adv. Mater. 2014, 15,
044201 (23 pp).
(13) For selected examples of Sonogashira coupling under greener
reaction conditions, see: (a) Suzuka, T.; Okada, Y.; Ooshiro, K.;
Uozumi, Y. Copper-Free Sonogashira Coupling in Water with an
Amphiphilic Resin-Supported Palladium Complex. Tetrahedron,
2010, 66, 1064–1069. (b) Moon, J.; Jeong, M.; Nam, H.; Ju, J.;
Moon, J. H.; Jung, H. M.; Lee, S. One-Pot Synthesis of
Diarylalkynes Using Palladium-Catalyzed Sonogashira Reaction
and Decarboxylative Coupling of sp Carbon and sp2 Carbon.
Org. Lett. 2008, 10, 945–948. (c) Feng, C.; Loh, T.-P. Palladium-
Catalyzed Decarboxylative Cross-Coupling of Alkynyl
Carboxylic Acids with Arylboronic Acids. Chem. Commun. 2010,
46, 4779–4781. (d) Liu, M.; Ye, M.; Xue, Y.; Yin, G.; Wang, D.;
Huang, J. Sonogashira Coupling Catalyzed by the
Cu(Xantphos)I–Pd(OAc)2 System. Tetrahedron Lett. 2016, 57,
3137–3139. (e) Strappaveccia, G.; Luciani, L.; Bartollini, E.;
Marrocchi, A.; Pizzo, F.; Vaccaro, L. -Valerolactone as an
Alternative Biomass-Derived Medium for the Sonogashira
Reaction. Green Chem. 2015, 17, 1071–1076. (f) Zhao, D.; Gao,
C.; Su, X.; He, Y.; You, J.; Xue, Y. Copper-Catalyzed
Decarboxylative Cross-Coupling of Alkynyl Carboxylic Acids
with Aryl Halides. Chem. Commun. 2010, 46, 9049–9051. (g)
Thogiti, S.; Parbathaneni, S. P.; Keesara, S. Polymer Anchored
3-Benzoyl-1-(1-benzylpiperidin-4-yl)-2-thiopseudourea–Pd(II)
Complex: An Efficient Catalyst for the Copper and Solvent Free
Sonogashira Cross-Coupling Reaction. J. Organomet. Chem.
2016, 822, 165–172. (h) Qu, X.; Li, T.; Sun, P.; Zhu, Y.; Yang, H.;
Mao, J. Highly Effective Copper-Catalyzed Decarboxylative
Coupling of Aryl Halides with Alkynyl Carboxylic Acids. Org.
Biomol. Chem. 2011, 9, 6938–6942. (i) Sagadevan, A.; Hwang,
K. C. Photo-Induced Sonogashira C–C Coupling Reaction
Catalyzed by Simple Copper(I) Chloride Salt at Room
Temperature. Adv. Synth. Catal. 2012, 354, 3421–3427. (j)
Schilz, M.; Plenio, H. A Guide to Sonogashira Cross-Coupling
Reactions: The Influence of Substituents in Aryl Bromides,
Acetylenes, and Phosphines. J. Org. Chem. 2012, 77, 2798–
2807. (k) Yu, L.; Han, Z.; Ding, Y. Gram-Scale Preparation of
Pd@PANI: A Practical Catalyst Reagent for Copper-Free and
Ligand-Free Sonogashira Couplings. Org. Process Res. Dev.
2016, 20, 2124–2129. (l) Jiang, Q.; Li, H.; Zhang, X.; Xu, B.; Su.
W. Pd-Catalyzed Decarboxylative Sonogashira Reaction via
Decarboxylative Bromination. Org. Lett. 2018, 20, 2424–2427.
(m) Truong, T.; Daugulis, O. Transition-Metal-Free Alkynylation
of Aryl Chlorides. Org. Lett. 2011, 13, 4172–4175. (n) Adam, R.;
Cabrero-Antonino, J. R.; Spannenberg, A.; Junge, K.; Jackstell,
R.; Beller, M. A General and Highly Selective Cobalt-Catalyzed
Hydrogenation of N-Heteroarenes under Mild Reaction
Conditions. Angew. Chem. Int. Ed. 2017, 56, 3216–3220. (o)
Susanto, W.; Chu, C.-Y.; Ang, W. J.; Chou, T.-C.; Lo, L.-C.; Lam,
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) ICH
Quality
Guidelines.
y-guidelines.html (accessed May 24, 2019).
(3) (a) Egorova, K. S.; Ananikov, V. P. Which Metals are Green for
Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh,
and Au Salts. Angew. Chem. Int. Ed. 2016, 55, 12150–12162.
(b) Egorova, K. S.; Ananikov, V. P. Toxicity of Metal Compounds:
Knowledge and Myths. Organometallics 2017, 36, 4071–4090.
(c) Hayler, J. D.; Leahy, D. K.; Simmons, E. M. A Pharmaceutical
Industry Perspective on Sustainable Metal Catalysis
Organometallics, 2019, 38, 36–46.
(4) Farina, V. High-Turnover Palladium Catalysts in Cross-Coupling
and Heck Chemistry: A Critical Overview. Adv. Synth. Catal.
2004, 346, 1553–1582.
(5) Deraedt, C.; Astruc, D.
“ Homeopathic” Palladium
Nanoparticle Catalysis of Cross Carbon–Carbon Coupling
Reactions. Acc. Chem. Res. 2014, 47, 494–503.
(6) Roy, D.; Uozumi, Y. Recent Advances in Palladium-Catalyzed
Cross-Coupling Reactions at ppm to ppb Molar Catalyst
Loadings. Adv. Synth. Catal. 2018, 360, 602–625.
(7) Hamasaka, G.; Sakurai, F. Uozumi, Y. A Palladium NNC-Pincer
Complex: An Efficient Catalyst for Allylic Arylation at Parts Per
Billion Levels. Chem. Commun. 2015, 51, 3886–3888.
(8) Hamasaka, G.; Ichii, S.; Uozumi, Y. A Palladium NNC-Pincer
Complex as an Efficient Catalyst Precursor for the
Mizoroki−Heck Reaction. Adv. Synth. Catal. 2018, 360,
1833−1840.
(9) Dieck, H. A.; Heck, F. R. Palladium Catalyzed Synthesis of Aryl,
Heterocyclic and Vinylic Acetylene Derivatives. J. Organomet.
Chem. 1975, 93, 259–263.
(10) Cassar, L. Synthesis of Aryl- and Vinyl-Substituted Acetylene
Derivatives by the Use of Nickel and Palladium Complexes. J.
Organomet. Chem. 1975, 93, 253–257.
(11) Sonogashira, K.; Tohda, Y.; Hagihara, N. A Convenient Synthesis
of Acetylenes: Catalytic Substitutions of Acetylenic Hydrogen
with Bromoalkenes, Iodoarenes, and Bromopyridines.
Tetrahedron Lett. 1975, 16, 4467–4470.
(12) For recent reviews, see: (a) Doucet, H.; Hierso, J.-C. Palladium-
Based Catalytic Systems for the Synthesis of Conjugated
Enynes by Sonogashira Reactions and Related Alkynylations.
Angew. Chem. Int. Ed. 2007, 46, 834–871. (b) Chinchilla, R.;
Nájera, C. The Sonogashira Reaction: A Booming Methodology
in Synthetic Organic Chemistry. Chem. Rev. 2007, 107, 874–
922. (c) Chinchilla, R.; Nájera, C. Recent Advances in
Sonogashira Reactions. Chem. Soc. Rev. 2011, 40, 5084–5121.
(d) Hierso, J.-C.; Beauperin, M.; Saleh, S.; Job, A.; Andrieu, J.;
Picquet, M. Uncommon Perspectives in Palladium- and
Copper-Catalysed Arylation and Heteroarylation of Terminal
Alkynes Following Heck or Sonogashira Protocols: Interactions
Copper/Ligand, Formation of Diynes, Reaction and Processes
in Ionic Liquids. C. R. Chim. 2013, 16, 580–596. (e) Li, J.; Yang,
Y. Fluorous Oxime Palladacycle:
A
Precatalyst for
Carbon−Carbon Coupling Reactions in Aqueous and Organic
Medium. J. Org. Chem. 2012, 77, 2729–2742. (p) Dermenci, A.;
Whittaker, R. E.; Gao, Y.; Cruz, F. A.; Yu, Z.-X.; Dong, G. Rh-
Catalyzed Decarbonylation of Conjugated Ynones via Carbon–
Alkyne Bond Activation: Reaction Scope and Mechanistic
Exploration via DFT Calculations. Chem. Sci. 2015, 6, 3201–
3210. (q) Gholap, A. R.; Venkatesan, K.; Pasricha, R.; Daniel, T.;
Lahoti, R. J.; Srinivasan, K. V. Copper- and Ligand-Free
Sonogashira Reaction Catalyzed by Pd(0) Nanoparticles at
Ambient Conditions under Ultrasound Irradiation. J. Org. Chem.
2005, 70, 4869–4872.
(14) For selected examples of arylations of terminal alkynes with
aryl halides using a less than 10 mol ppm loading of palladium
catalyst; see: (a) Feuerstein, M.; Berthiol, F.; Doucet, H.;
Santelli, M. Palladium–Tetraphosphine Complex: An Efficient
ACS Paragon Plus Environment