Green Chemistry
Page 6 of 8
DOI: 10.1039/C8GC01366G
Table 2 Results of the iridium catalysed depolymerisation of softwood lignins
OH
OMe
HO
OH
O
O
OH
O
O
OH
O
O
O
OH
HO
OH
OH
A
L
A1
A2
A3
A4
L1
L2
L3
L4
L5
L6
HO
HO
OMe
O
HO
HO
HO
O
O
O
O
O
O
OH
OMe
OMe
OMe
OMe
OMe
OMe
OMe
O
OMe
O
OMe
O
OMe
OH
OH
OH
OH
OH
OH
Pre-Catalyst
Time
Product Yields (wt%)c
L1 L2 L3
Entry
Lignina
Solvent
(wt% of 17)b
(h)
1
A1
A2
1.1
0.38 0.04
1.0
0.82 0.10
0.00 0.17
1.4
A3
A4
L4
L5
L6
Total
3.8
1
2
EL
EL
Dioxane/Water
Dioxane/Water
Dioxane/Water
Diglyme/Water
Water
Dioxane/Water
Dioxane/Water
Dioxane/Water
5
1.5
5
0.02
0.01
0.03
0.03
0.00
0.04
0.12 0.15
0.53 0.07
0.44 0.42 0.05 0.89
0.03 0.00 0.01 0.12
0.44 0.46 0.06 0.77
0.39 0.34
0.22 0.00
0.54 0.58 0.05 0.84
1
0.05 0.01 0.00
0.65
3.8
3
EL
2
0.15 0.36
0.34 0.15
0.58 0.44 0.09
0.42 0.00 0.00
0.34 0.11
4
EL
5
2
0.05 0.58
0.10 0.42
3.4
5
EL
5
2
1.5
6
Dioxasolv
Dioxasolv
Dioxasolv
5
2
0.13 0.56
0.54 0.28
4.6
7d
8e
5
5
1+16 0.00
1+16 0.00
1.4
0.00 0.55
0.00 0.19
0.18 0.00 0.11
0.01 0.00 0.01
0.00 0.00 0.00
2.4
1.8
4.8
2.7
b
EL = enzyme lignin, Dioxasolv = lignin extracted with dioxane/water (8:2), 0.1 M HCl, 1 hour, reflux. 5wt% of 17 corresponds to ∼2mol% loading
c
of Ir based on total lignin. 1.5wt% corresponding to ∼2mol% loading of Ir based on β-O-4 content. from GC-FID analysis of silylated products using
d
1,3,5-trimethoxybenzene as internal standard and experimentally determined response factors. Crude reaction mixture further refluxed open to air
e
for 16 h. Crude reaction mixture concentrated, redissolved in the same volume of water and refluxed open to air for 16 h.
optimised conditions, however they do elegantly demonstrate an
Acknowledgements
ability to tune and simplify the complex mixtures of products
The authors would like to gratefully acknowledge Dr. Hans Wienk
obtained directly from lignin depolymerisation reactions.
and the NMR facility of Utrecht University. The CatchBio program
is also acknowledged for financial support.
Conclusions
Notes and references
A new catalytic system for the cleavage of the β-O-4 linkages
1
2
M. Graglia, N. Kanna and D. Esposito, ChemBioEng Reviews, 2015, 2, 377–392.
R. Rinaldi, R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. A. Bruijn-
incx and B. M. Weckhuysen, Angew. Chem. Int. Ed., 2016, 55, 8164–8215.
Z. Sun, B. Fridrich, A. De Santi, S. Elangovan and K. Barta, Chem. Rev., 2018,
118, 614–678.
S. Constant, H. L. J. Wienk, A. E. Frissen, P. de Peinder, R. Boelens, D. S. van
Es, R. J. H. Grisel, B. M. Weckhuysen, W. J. J. Huijgen, R. J. A. Gosselink and
P. C. A. Bruijnincx, Green Chem., 2016, 18, 2651–2665.
P. J. Deuss, M. Scott, F. Tran, N. J. Westwood, J. G. De Vries and K. Barta, J. Am.
Chem. Soc, 2015, 137, 7456–7467.
R. Jastrzebski, S. Constant, C. S. Lancefield, N. J. Westwood, B. M. Weckhuysen
and P. C. A. Bruijnincx, ChemSusChem, 2016, 9, 2074–2079.
S. Van den Bosch, W. Schutyser, R. Vanholme, T. Driessen, S.-F. Koelewijn,
T. Renders, B. De Meester, W. J. J. Huijgen, W. Dehaen, C. M. Courtin, B. La-
grain, W. Boerjan and B. F. Sels, Energy Environ. Sci., 2015, 8, 1748–1763.
M. V. Galkin and J. S. M. Samec, ChemSusChem, 2014, 7, 2154–2158.
T. Parsell, S. Yohe, J. Degenstein, T. Jarrell, I. Klein, E. Gencer, B. Hewetson,
M. Hurt, J. I. Kim, H. Choudhari, B. Saha, R. Meilan, N. Mosier, F. Ribeiro, W. N.
Delgass, C. Chapple, H. I. Kenttämaa, R. Agrawal and M. M. Abu-Omar, Green
Chem., 2015, 17, 1492–1499.
in model compounds and real lignin has been developed using
an anionic Cp∗Ir-bypyridonate complex. In contrast to previous
secondary alcohol oxidation-lignin activation strategies, in this
work, we targeted primary alcohol oxidation as an activation
strategy, thus opening lignin depolymerisation pathways via
cleavage of the Cα -Cβ bond in the β-O-4 linkages, rather
than the more common β-aryl ether (C-O) pathway. In model
compounds this approach proved very selective for primary over
secondary alcohol oxidation pathways. Translating this chemistry
to actual lignin proved effective, allowing us to demonstrate
the production of non-phenolic monomers directly from lignin,
setting our C-C bond cleavage method and products apart
from other methods. The major products include bifunctional
monoaromatic compounds containing carboxylic acid and/or
alcohol groups, potentially making them useful building blocks.
Furthermore, through the use of detailed 2D HSQC NMR analysis
we have shown that resinol units are inert under our conditions,
whilst phenylcoumarans are processed to novel ring opened,
oxidised products. We have also shown that through a simple,
two-step, one pot, one catalyst reaction procedure that the
initially rather complex mixtures of products obtained from
lignin can be channelled towards a single set of carboxylic acid
products. The approach demonstrated here opens up a new
portfolio of lignin-derived monoaromatic products, thus diversify-
ing the potential product slate for this key biorefinery component.
3
4
5
6
7
8
9
10 C. Chesi, I. B. de Castro, M. T. Clough, P. Ferrini and R. Rinaldi, ChemCatChem,
2016, 8, 2079–2088.
11 X. Huang, O. M. Morales Gonzalez, J. Zhu, T. I. Korányi, M. D. Boot and E. J. M.
Hensen, Green Chem., 2017, 19, 175–187.
12 T. Renders, S. Van den Bosch, S.-F. Koelewijn, W. Schutyser and B. F. Sels, Energy
Environ. Sci., 2017, 10, 1551–1557.
13 S. Van den Bosch, T. Renders, S. Kennis, S.-F. Koelewijn, G. Van den Bossche,
T. Vangeel, A. Deneyer, D. Depuydt, C. M. Courtin, J. M. Thevelein, W. Schutyser
and B. F. Sels, Green Chem., 2017, 19, 3313–3326.
14 S.-F. Koelewijn, S. Van den Bosch, T. Renders, W. Schutyser, B. Lagrain, M. Smet,
J. Thomas, W. Dehaen, P. Van Puyvelde, H. Witters and B. F. Sels, Green Chem.,
2017, 19, 2561–2570.
15 S.-F. Koelewijn, C. Cooreman, T. Renders, C. A. Saiz, S. Van den Bosch,
W. Schutyser, W. De Leger, M. Smet, P. Van Puyvelde, H. Witters, B. Van der
Bruggen and B. F. Sels, Green Chem., 2018, 20, 1050–1058.
16 I. Kumaniaev, E. Subbotina, J. Sävmarker, M. Larhed, M. V. Galkin and J. Samec,
Green Chem., 2017, 19, 5767–5771.
17 W. Schutyser, S. Van den Bosch, T. Renders, T. De Boe, S.-F. Koelewijn, A. De-
waele, T. Ennaert, O. Verkinderen, B. Goderis, C. M. Courtin and B. F. Sels, Green
Chem., 2015, 17, 5035–5045.
18 F. P. Bouxin, D. S. Jackson and M. C. Jarvis, Bioresour. Technol., 2014, 162,
236–242.
19 L. da Costa Sousa, M. Foston, V. Bokade, A. Azarpira, F. Lu, A. J. Ragauskas,
J. Ralph, B. Dale and V. Balan, Green Chem., 2016, 18, 4205–4215.
20 C. S. Lancefield, I. Panovic, P. J. Deuss, K. Barta and N. J. Westwood, Green
Conflicts of interest
There are no conflicts to declare.
6 |
1–7