Table 5 Various oxazolidinones synthesisa
Entry R1, R2 T/◦C Time Conv./%b Yield/%b Regio-sel.c
and regenerate the catalyst. The main product 2 could originate
from ring-opening of the aziridine through nucleophilic attack at
the most substituted carbon (path b), in agreement with typical
ring-opening of the 3-membered heterocycles.7
1
2
3
4
5
6
7
8
Et, Ph
25
25
70
25
25
25
25
80
25
15 min >99
15 min >99
15 min >99
15 min 98
98
97 : 3
98 : 2
99 : 1
98 : 2
99 : 1
97 : 3
97 : 3
97 : 3
Et, p-Cl-Ph
Et, p-Me-Ph
n-Pr, Ph
i-Pr, Ph
n-Bu, Ph
i-Bu, Ph
Bn, Ph
c-Hex, Ph
c-Hex, p-Cl-Ph 60
c-Hex, p-Me-Ph 55
>99
>99
94
71
98
98
98
45
>99
73
In summary, protic onium salts, such as HPyI proved to
be highly efficient and stable catalysts for the cycloaddition of
CO2 to aziridines without utilization of any organic solvent or
additive under modest reaction conditions. The protic onium
salts used in this study represent cheap, easily synthesized,
robust etc. protic onium-based catalysts, which can effectively
activate aziridine through hydrogen bonding formation. Further
extending the application of protic onium salt towards broad
reactions is currently under investigation in our laboratory.
This work was financially supported by the National Natural
Science Foundation of China (No. 20672054, 20872073), the 111
project (B06005), and the Committee of Science and Technology
of Tianjin.
2 h
30 min >99
4 h >99
15 min >99
72
9
10
11
48 h
48 h
48 h
46
>99
73
>99 : 1
>99 : 1
>99 : 1
a Reaction conditions: 1 (1 mmol); catalyst loading (1 mol%); CO2
(3 MPa). b Determined by GC. c Molar ratio of 2 to 3.
the other hand, an electron-withdrawing group on the benzene
ring showed higher activity than an electron-donating group
(entry 10 vs. 11).
References
Previously, we have reported CO2 activation induced by
nucleophilic tertiary nitrogen based on studies using in situ FT-
IR spectroscopy under CO2 pressure.4l,m Indeed, almost the same
result was observed for this catalytic system. The absorption
peak of the carbonyl group was migrated from 1770 cm-1 (1a-
CO2 carbamate salt, Scheme 3) to 1740 cm-1 (oxazolidinone),
when 1a was used as the substrate (Fig. S1, see electronic
supplementary information†), implying the activation of CO2
by the tertiary nitrogen atom of aziridine. To further gain insight
into the reaction mechanism, 1H NMR technique was also
employed to identify aziridine activation presumably induced
by hydrogen bonding formation between the aziridine and the
N-proton onium salt e.g. HPyI. It was found that the para-proton
showed a upfield shift from 8.59 to 8.50, while ortho-proton gave
a downfield shift from 8.92 to 9.38 (Fig. 1), plausibly indicating
hydrogen bonding formation between HPyI and 1a.
1 (a) H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman,
A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, D. A. Dixon, K. Domen,
D. L. DuBois, J. Eckert, E. Fujita, D. H. Gibson, W. A. Goddard, D.
W. Goodman, J. Keller, G. J. Kubas, H. H. Kung, J. E. Lyons, L. E.
Manzer, T. J. Marks, K. Morokuma, K. M. Nicholas, R. Periana, L.
Que, J. Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt, A. Sen,
G. A. Somorjai, P. C. Stair, B. R. Stults and W. Tumas, Chem. Rev.,
2001, 101, 953; (b) T. Sakakura, J.-C. Choi and H. Yasuda, Chem.
Rev., 2007, 107, 2365.
2 Application of oxazolidinones as intermediates and chiral auxiliaries:
(a) R. J. Watson, D. Batty, A. D. Baxter, D. R. Hannah, D. A. Owen
and J. G. Montana, Tetrahedron Lett., 2002, 43, 683; (b) L. Aurelio,
R. T. C. Brownlee and A. B. Hughes, Chem. Rev., 2004, 104, 5823;
(c) T. A. Mukhtar and G. D. Wright, Chem. Rev., 2005, 105, 529;
(d) T. Andreou, A. M. Costa, L. Esteban, L. Gonza`lez, G. Mas
and J. Vilarrasa, Org. Lett., 2005, 7, 4083; (e) C. W. Phoon and C.
Abell, Tetrahedron Lett., 1998, 39, 2655; (f) M. Prashad, Y. Liu, H.-Y.
Kim, O. Repic and T. J. Blacklock, Tetrahedron: Asymmetry, 1999, 10,
3479; (g) R. E. Gawley, S. A. Campagna, M. Santiago and T. Ren,
Tetrahedron: Asymmetry, 2002, 13, 29.
3 Other processes for oxazolidinone synthesis: (a) W. J. Close, J. Am.
Chem. Soc., 1951, 73, 95; (b) D. Ben-Ishai, J. Am. Chem. Soc., 1956, 78,
4962; (c) T. Yoshida, N. Kambe, A. Ogawa and N. Sonoda, Phosphorus
Sulfur Relat. Elem., 1988, 38, 137; (d) M. Costa, G. P. Chiusoli and
M. Rizzardi, Chem. Commun., 1996, 1699; (e) M. Shi and Y.-M. Shen,
J. Org. Chem., 2001, 67, 16; (f) M. Feroci, M. Orsini, G. Sotgiu, L.
Rossi and A. Inesi, J. Org. Chem., 2005, 70, 7795; (g) Y. Kayaki, M.
Yamamoto, T. Suzuki and T. Ikariya, Green Chem., 2006, 8, 1019;
(h) Y. Gu, Q. Zhang, Z. Duan, J. Zhang, S. Zhang and Y. Deng, J.
Org. Chem., 2005, 70, 7376.
4 Examples of coupling reaction of aziridines with CO2: (a) A. W. Miller
and S. T. Nguyen, Org. Lett., 2004, 6, 2301; (b) Y.-M. Shen, W.-L. Duan
and M. Shi, Eur. J. Org. Chem., 2004, 2004, 3080; (c) M. T. Hancock
and A. R. Pinhas, Tetrahedron Lett., 2003, 44, 5457; (d) A. Sudo, Y.
Morioka, E. Koizumi, F. Sanda and T. Endo, Tetrahedron Lett., 2003,
44, 7889; (e) A. Sudo, Y. Morioka, F. Sanda and T. Endo, Tetrahedron
Lett., 2004, 45, 1363; (f) C. Phung and A. R. Pinhas, Tetrahedron Lett.,
2010, 51, 4552; (g) H. Kawanami and Y. Ikushima, Tetrahedron Lett.,
2002, 43, 3841; (h) H. Kawanami, H. Matsumoto and Y. Ikushima,
Chem. Lett., 2005, 34, 60; (i) H.-F. Jiang, J.-W. Ye, C.-R. Qi and L.-B.
Huang, Tetrahedron Lett., 2010, 51, 928; (j) Y. Du, Y. Wu, A.-H. Liu
and L.-N. He, J. Org. Chem., 2008, 73, 4709; (k) Y. Wu, L.-N. He, Y.
Du, J.-Q. Wang, C.-X. Miao and W. Li, Tetrahedron, 2009, 65, 6204;
(l) Z.-Z. Yang, L.-N. He, S.-Y. Peng and A.-H. Liu, Green Chem.,
2010, 12, 1850; (m) Xiao-Yon Dou, L.-N. He, Zhen-Zhen Yang and
Jing-Lun Wang, Synlett, 2010, 2159.
Fig. 1 The 1H NMR (CDCl3, 400 MHz) of HPyI without and with 1a.
On the basis of previous reports4c,j and the experimental
results herein, a possible mechanism for the HPyI-catalyzed
cycloaddition of CO2 with aziridine was proposed as shown in
Scheme 3. Firstly, aziridine could coordinate with CO2 to afford
the carbamate salt, which was detected by in situ FT-IR.4l,m
Simultaneously, the aziridine itself could also interact with
HPy+ through hydrogen bonding, thus resulting in aziridine’s
activation. Subsequent nucleophilic attack by the iodide anion
and the final intra-molecular ring-closure, form oxazolidinone
5 T. Welton, Chem. Rev., 1999, 99, 2071.
6 (a) J. Peng and Y. Deng, New J. Chem., 2001, 25, 639; (b) H. Kawanami,
A. Sasaki, K. Matsui and Y. Ikushima, Chem. Commun., 2003, 896.
7 R. E. Parker and N. S. Isaacs, Chem. Rev., 1959, 59, 737.
This journal is
The Royal Society of Chemistry 2011
Green Chem., 2011, 13, 2351–2353 | 2353
©