Published on Web 05/15/2008
Organometallic Enantiomeric Scaffolding: General Access to
2-Substituted Oxa- and Azabicyclo[3.2.1]octenes via a
Brønsted Acid Catalyzed [5 + 2] Cycloaddition Reaction
Ethel C. Garnier and Lanny S. Liebeskind*
Emory UniVersity, Department of Chemistry, 1515 Dickey DriVe, Atlanta, Georgia 30322
Received January 31, 2008; E-mail: chemLL1@emory.edu
Abstract: 6-Substituted TpMo(CO)2(η-2,3,4-pyranyl)- and TpMo(CO)2(η-2,3,4-pyridinyl) scaffolds (Tp )
hydridotrispyrazolylborato) function as reaction partners in an efficient regio- and stereocontrolled synthesis
of functionalized oxa- and azabicyclo[3.2.1]octenes through a novel Brønsted acid catalyzed [5 + 2]
cycloaddition reaction. Excellent exo-selectivities are obtained, and the reaction gives products with complete
retention of enantiomeric purity when carried out with chiral, nonracemic scaffolds. The substituent at C-6
of the η3-coordinated heterocyclic scaffold not only influences [5 + 2] reactivity but also plays a critical role
in the demetalation step directing the reaction to only one of two possible products.
Introduction
For greatest synthetic versatility it is important to develop
practical routes to pyranyl and pyridinyl organometallic scaffolds
bearing additional substitution patterns about the heterocycle
ring. This paper describes the high yield and high enantiopurity
construction of the air-stable 2-oxo-pyranyl and -pyridinyl
scaffolds 3 and 4 and their progeny, the 6-substituted η3-pyranyl-
and η3-pyridinylmolybdenum complexes 7 and 8 (Figure 2).
The latter two systems participate in versatile enantiocontrolled
[5 + 2] cycloadditions taking place through an unusual Brønsted
acid assisted process allowing access, after a completely
regioselectiVe demetalation, to functionalized 2-substituted oxa-
and azabicyclo[3.2.1]octenes of high enantiopurity.
The oxa- and azabicyclo[3.2.1]octene skeletons are key
structural units found in a large and diverse array of
biologically interesting and medicinally important natural and
synthetic products.16–21 Structurally complex molecules pos-
sessing oxa- and azabicyclo[3.2.1]octane skeletons have been
rapidly and efficiently generated by [5 + 2] cycloadditions
of 3-oxidopyrylium22,23 and 3-oxidopyridinium dipoles.24
Although synthetically very powerful, these methods can be
Air-stable metal π-complexes such as the 3-oxopyranyl and
3-oxopyridinylmolybdenum complexes 1 and 2 shown in Figure
1 (Tp ) hydridotrispyrazolylborato) can function as versatile
organometallic enantiomeric scaffolds.1 Short, scalable, and
practicable methods of synthesis of high enantiopurity scaffolds
TpMo(CO)2(3-oxopyranyl) 1 and TpMo(CO)2(3-oxopyridinyl)
2 have been developed,2 and from these simple scaffolds a
diverse array of biologically relevant heterocyclic core structures
can be obtained in an enantiocontrolled fashion (Figure 1).3–15
The synthetic elaboration of the 3-oxopyranyl and -pyridinyl
complexes 1 and 2 often proceeds Via the 5-substituted
η3-pyranyl and -pyridinyl scaffolds 5 and 6 shown in Figure 2.
(1) Organometallic enantiomeric scaffolds: (1) the metal/ligand auxiliary
attached to the unsaturated ligand influences novel reactions, controls
non-traditional selectivities, and provides a dominant regio- and
stereocontrol element on the scaffold that allows the predictable
introduction of new stereocenters at multiple sites around the unsatur-
ated ligand, (2) a single metal/ligand auxiliary controls the introduction
of multiple stereocenters over multiple steps, and (3) the organometallic
nature of the scaffolding enables the use of stereodivergent tactics for
the introduction of ring substituents.
(2) Coombs, T. C.; Lee IV, M. D.; Wong, H.; Armstrong, M.; Cheng, B.;
Chen, W.; Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2008, 73,
882–888.
(16) Pollini, G. P.; Benetti, S.; Risi, C. D.; Zanirato, V. Chem. ReV. 2006,
106, 2434–2454.
(17) Lounasmaa, M.; Tamminen, T. In Alkaloids; Academic Press: New
York, 1993; pp 1-114..
(3) Shu, C.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 2878–2879.
(4) Shu, C.; Alcudia, A.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc.
2001, 123, 12477–12487.
(18) Nair, V.; Treesa, P. M.; Rath, N. P.; Kunwar, A. C.; KiranKumar,
K. S.; RaviSankar, A.; Vairamani, M.; Prabhakar, S. Tetrahedron Lett.
2002, 58, 7221–7231.
(5) Yin, J.; Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am. Chem.
Soc. 2000, 122, 10458–10459.
(19) Singh, S. B.; Jayasuriya, H.; Ondeyka, J. G.; Herath, K. B.; Zhang,
C.; Zink, D. L.; Tsou, N. N.; Ball, R. G.; Basilio, A.; Genilloud, O.;
Diez, M. T.; Vicente, F.; Pelaez, F.; Young, K.; Wang, J. J. Am. Chem.
Soc. 2006, 128, 11916–11920.
(6) Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2000, 65, 7445–7455.
(7) Rubio, A.; Liebeskind, L. S. J. Am. Chem. Soc. 1993, 115, 891–901.
(8) Arraya´s, R. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 9026–
9027.
(20) Han, L.; Huang, X.; Sattler, I.; Moellmann, U.; Fu, H.; Lin, W.;
Grabley, S. Planta Med. 2005, 71, 160–164.
(9) Arraya´s, R. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 6185–
6186.
(21) Shen, Y.-H.; Li, S.-H.; Li, R.-T.; Han, Q.-B.; Zhao, Q.-S.; Liang, L.;
Sun, H.-D.; Lu, Y.; Cao, P.; Zheng, Q.-T. Org. Lett. 2004, 6, 1593–
1595.
(10) Arraya´s, R. G.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007,
129, 1816–1825.
(11) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2006, 128, 465–472.
(12) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2005, 127, 11258–11259.
(13) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 3909–3911.
(14) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 4083–4086.
(15) Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811–5812.
(22) Wender, P. A.; Love, J. A. In AdVances in Cycloaddition; Harmata,
M., Ed.; JAI Press: Stamford, CT, 1999; pp 1-45..
(23) Chiu, P.; Lautens, M. In Topic in Current Chemistry; Metz, P., Ed.;
Springer-Verlag: Berlin, 1997; Vol. 190; pp 1-85..
(24) Katritzky, A. R.; Dennis, N. Chem. ReV. 1989, 89, 827–861.
9
10.1021/ja800664v CCC: $40.75
2008 American Chemical Society
J. AM. CHEM. SOC. 2008, 130, 7449–7458 7449