Photochemical methods for the protection and deprotection
of alcohols are well-known.5 Methods for similar transforma-
tions involving carbonyls and acetals are less widely used.
However, photoinitiated release of carbonyl compounds has
recently received much attention.6 Photosensitized conversion
of carbonyls to their corresponding dimethyl acetals by pho-
tolysis in methanol with various quinones as sensitizer was
recently described.7 This reaction was apparently due to a
photochemically generated acid. During the course of our
investigation of anthraquinone photochemistry, we have dis-
covered a similar reaction that provides a quick and easy method
for installing the tetrahydropyran (THP) protecting group on
an alcohol.
Photosensitized Tetrahydropyran Transfer
R. P. Oates and Paul B. Jones*
Department of Chemistry, Wake Forest UniVersity,
Winston-Salem, North Carolina 27109
ReceiVed March 6, 2008
We observed that photolysis of a mixture of THP-protected
R-terpineol (1),8 1-pentanol (2), and 1,5-dichloro-9,10-an-
thraquinone (DCQ) in dry dichloromethane using 419 nm
Rayonet lamps resulted in transfer of the THP group from 1 to
2. This proved to be a general reaction: the THP group of 1
was efficiently transferred to other alcohols under the photolysis
conditions. The reaction was also observed under standard
fluorescent lights or in sunlight. THP transfer was also observed
when other THP ethers were photolyzed in the presence of
alcohols and DCQ. Apparently, this photolysis produced an
equilibrium mixture of the THP ethers. When a 3° THP ether
was photolyzed in the presence of either a 2° or 1° alcohol, the
THP was completely transferred to the less hindered hydroxyl
while photolysis of a 1° THP ether in the presence of a 1°
alcohol resulted in a mixture of the possible THP ethers.
THP ethers were formed cleanly during photolysis of 3,4-
dihydro-2H-pyran, an alcohol, and catalytic 1,5-dichloro-
9,10-anthraquinone with use of visible light. The reaction
could be conducted under ambient fluorescent lighting or
with sunlight as well as in a Rayonet reactor. The scope and
mechanism are discussed.
Photochemistry often provides methods for organic transfor-
mations that complement ground state reactions. The utility of
photolabile protecting groups is well-documented and further
development of such groups is of much current interest.1 In
certain cases, photochemistry can give selectivity based on
absorbance, excited state energies, and conformation, potentially
reversing selectivities seen in thermal reactions.2 Additionally,
photons are a cheap reagent and generate no waste. The redox
and photochemistry of quinones has been studied extensively;
this chemistry has been recently applied to photolabile protecting
groups in our laboratory and used in synthetic applications
elsewhere.3,4
The reaction could also be sensitized by p-chloroanil (CA).
The efficacy of CA was similar to that found by de Lijser in
(5) (a) Pika, J.; Konosonoks, A.; Robinson, R. M.; Singh, P. N. D.;
Gudmundsdottir, A. D. J. Org. Chem. 2003, 68, 1964. (b) Barma, D. K.;
Bandyopadhyay, A.; Capdevila, J. H.; Falck, J. R. Org. Lett. 2003, 5, 4755. (c)
Aujard, I.; Benbrahim, C.; Gouget, M.; Ruel, O.; Baudin, J.-B.; Neveu, P.; Jullien,
L. Chem.- Eur. J. 2006, 12, 6865. (d) Literak, J.; Dostalova, A.; Klan, P. J.
Org. Chem. 2006, 71, 713. (e) Papageorgiou, G.; Barth, A.; Corrie, J. E. T.
Photochem. Photobiol. Sci. 2005, 4, 216. (f) Li, H.; Yang, J.; Porter, N. A. J.
Photochem. Photobiol., A 2005, 169, 289. (g) Blanc, A.; Bochet, C. G. J. Am.
Chem. Soc. 2004, 126, 7174. (h) Loudwig, S.; Goeldner, M. Tetrahedron Lett.
2001, 42, 7957. (i) Furuta, T.; Hirayama, Y.; Iwamura, M. Org. Lett. 2001, 3,
1809. (j) Brook, M. A.; Balduzzi, S.; Mohamed, M.; Gottardo, C. Tetrahedron
1999, 55, 10027. (k) Brook, M. A.; Gottardo, C.; Balduzzi, S.; Mohamed, M.
Tetrahedron Lett. 1997, 38, 6997. (l) Kostikov, A. P.; Popik, V. V. J. Org. Chem.
2007, 72, 9190. (m) Literak, J.; Wirz, J.; Klan, P. Photochem. Photobiol. Sci.
2005, 4, 43. (n) Konosonoks, A.; Wright, P. J.; Tsao, M.-L.; Pika, J.; Novak,
K.; Mandel, S. M.; Krause Bauer, J. A.; Bohne, C.; Gudmundsdottir, A. D. J.
Org. Chem. 2005, 70, 2763. (o) Jones, P. B.; Pollastri, M. P.; Porter, N. A. J.
Org. Chem. 1996, 61, 9455. (p) Cameron, J. F.; Frechet, J. M. J. J. Am. Chem.
Soc. 1991, 113, 4303. (q) Pirrung, M. C.; Lee, Y. R. J. Org. Chem. 1993, 58,
6961–6963.
(1) (a) Patchornik, A.; Amit, B.; Woodward, R. B. J. Am. Chem. Soc. 1970,
92, 6333. (b) Bochet, C. G. Perk. Trans. 1 2002, 2, 125. (c) Schelhaas, M.;
Waldmann, H. Angew. Chem., Int. Ed. 1996, 35, 2056. (d) Bochet, C. G. AdV.
Org. Synth. 2005, 1, 3. (e) Bochet, C. G. Pure Appl. Chem. 2006, 78, 241. (f)
del Campo, A.; Boos, D.; Spiess, H. W.; Jonas, U. Angew. Chem., Int. Ed. 2005,
44, 4707. (g) Glatthar, R.; Giese, B. Org. Lett. 2000, 2, 2315. (h) Peukert, S.;
Giese, B. J. Org. Chem. 1998, 63, 9045. (i) Givens, R. S.; Conrad, P. G., II;
Yousef, A. L.; Lee, J.-I. CRC Handbook of Organic Photochemistry and
Photobiology, 2nd ed.; CRC: Boca Raton, FL, 2004; Vol. 69, p 1. (j) Givens,
R. S.; Lee, J.-I. J. Photosci. 2003, 10, 37.
(2) (a) Kessler, M.; Glatthar, R.; Giese, B.; Bochet, C. G. Org. Lett. 2003,
5, 1179. (b) Blanc, A.; Bochet, C. G. J. Org. Chem. 2002, 67, 5567. (c) Bochet,
C. G. Angew. Chem., Int. Ed. 2001, 40, 2071. (d) Blanc, A.; Bochet, C. G. Org.
Lett. 2007, 9, 2649. (e) Ladlow, M.; Legge, C. H.; Neudeck, T.; Pipe, A. J.;
Sheppard, T.; Yang, L. L. Chem. Commun. 2003, 2048. (f) Giese, B.; Wettstein,
P.; Stahelin, C.; Barbosa, F.; Neuburger, M.; Zehnder, M.; Wessig, P. Angew.
Chem., Int. Ed. 1999, 38, 2586.
(6) (a) Mella, M.; Fasani, E.; Albini, A. J. Org. Chem. 1992, 57, 3051. (b)
Fasani, E.; Freccero, M.; Mella, M.; Albini, A. Tetrahedron 1997, 53, 2219. (c)
Hashimoto, S.; Kurimoto, I.; Fujii, Y.; Noyori, R. J. Am. Chem. Soc. 1985, 107,
1427. (d) Wang, P.; Hu, H.; Wang, Y. Org. Lett. 2007, 9, 2831. (e) Kantevari,
S.; Narasimhaji, C. V.; Mereyala, H. B. Tetrahedron 2005, 61, 5849. (f) Lin,
W.; Lawrence, D. S. J. Org. Chem. 2002, 67, 2723. (g) Gravel, D.; Hebert, J.;
Thoraval, D. Can. J. Chem. 1983, 61, 400. (h) Herrmann, A. Angew. Chem.,
Int. Ed. 2007, 46, 5836. (i) Lage, R. J.; Bochet, C. G. Org. Lett. 2005, 7, 3545.
(j) Herrmann, A. Spectrum 2004, 17, 10. (k) Levrant, B.; Herrmann, A.
Photochem. Photobiol. Sci. 2002, 1, 907. (l) Rochat, S.; Minardi, C.; de Saint-
Laumer, J. Y.; Herrmann, A. HelV. Chim. Acta 2000, 83, 1645. (m) Blanc, A.;
Bochet, C. G. J. Org. Chem. 2003, 68, 1138. (n) Yong, P. K.; Banerjee, A. Org.
Lett. 2005, 7, 2485.
(3) (a) Gorner, H. Photochem. Photobiol. 2003, 77, 171. (b) Tickle, K.;
Wilkinson, F. J. Chem. Soc., Faraday Trans. 1 1965, 61, 1981. (c) Carlson,
S. A.; Hercules, D. M. Anal. Chem. 1973, 17, 123. (d) Hamanoue, K.; Nakayama,
T.; Asada, S.; Ibuki, K. J. Phys. Chem. 1992, 96, 3736.
(4) (a) Brinson, R. G.; Hubbard, S. C.; Zuidema, D. R.; Jones, P. B. J.
Photochem. Photobiol. A, Chem. 2005, 175, 118. (b) Brinson, R. G.; Jones, P. B.
Org. Lett. 2004, 6, 3767. (c) Blankespoor, R. L.; Smart, R. P.; Batts, E. D.;
Kiste, A. A.; Lew, R. E.; Van der Vliet, M. E. J. Org. Chem. 1995, 60, 6852.
(d) Blankespoor, R. L.; De Jong, R. L.; Dykstra, R.; Hamstra, D. A.; Rozema,
D. B.; VanMeurs, D. P.; Vink, P. J. Am. Chem. Soc. 1991, 113, 3507.
(7) de Lijser, H. J.; Rangel, N. A. J. Org. Chem. 2004, 69, 8315.
(8) Bolitt, V.; Mioskowski, C.; Shin, D. S.; Falck, J. R. Tetrahedron Lett.
1988, 29, 4583.
10.1021/jo800519h CCC: $40.75
Published on Web 05/28/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 4743–4745 4743