13% EtOAc–hexanes containing a trace (0.5–1% v/v) of Et3N,
gave 49 (111.6 mg, 75%) as a colorless oil: [a]2D2 −21.08 (c 0.48,
CHCl3); 1H NMR (C6D6, 400 MHz) d 0.00 (s, 3 H), 0.18 (s 3 H),
0.95 (t, J = 7.4 Hz, 3 H), 1.12 (s, 9 H), 1.57–1.77 (m, 2 H), 4.54
(dd, J = 5.1, 6.9 Hz, 1 H), 7.04 (apparent d as part of AAꢀBBꢀ
system, J = 8.7 Hz, 2 H), 7.18 (apparent dd as part of AAꢀBBꢀ
system, J = 0.5, 8.9 Hz, 2 H); 13C NMR (C6D6, 100 MHz) d
−5.0 (q), −4.7 (q), 9.7 (q), 18.3 (s), 25.9 (q), 33.6 (t), 75.4 (d),
119.3 (s, CF3 quartet, J = 318.6 Hz), 121.0 (d), 127.7 (d), 146.1
(s), 148.6 (s); mmax (CHCl3 cast; cm−1) 2959, 2932, 2859, 1500,
1427, 1251, 1214, 1143, 890, 861, 837; exact mass m/z calcd for
C16H25F3NaO4SSi 421.10872, found 421.10906.
5 (a) Levorotatory conocarpan: B. Freixa, R. Vila, E. A. Ferro, T. Adzet
and S. Can˜igueral, Planta Medica, 2001, 67, 873–875; (b) M. R. G. Vega,
M. G. de Carvalho, J. R. Velandia and R. Braz-Filho, Rev. Latinoam.
Qu´ım., 2001, 29, 63–72.
6 Conocarpan isolated from the leaves of Piper regnelli (reference 3),
the roots of Krameria cystisoides (reference 4a), Krameria tomentosa
(reference 4l) and Krameria triandra (reference 4c), and the stems of
Anogeissus acuminata (reference 4e) is reported to be dextrorotatory;
our own synthetic material, of proven absolute configuration 1, is
levorotatory and the CD curve of its acetate has negative De at 260 nm.
The acetate of conocarpan isolated from timber (reference 1) is reported
to have positive De at 260 nm and so the parent conocarpan must be
dextrorotatory. Consequently all these plant sources afford material
of the same absolute configuration. With the following exception,
other references to conocarpan that we have examined do not give
the specific rotation. Conocarpan isolated from the leaves of Piper
fulvescens C. DC, (reference 5a) is reported to have [a]2D1 = −108.26
(c 0.025,solvent not reported).
(S)-tert-Butyldimethyl(1-phenylpropoxy)silane
(50). Pd/C
(10% w/w, 60.8 mg, 0.0571 mmol) was added to a solution of
49 (99.0 mg, 0.248 mmol) and Et3N (0.11 mL, 0.79 mmol) in
EtOAc (5 mL). The stirred mixture was degassed by sequentially
evacuating the flask (house vacuum) and then admitting H2, the
procedure being repeated twice more. A hydrogen-filled balloon
was then connected to the flask and stirring was continued for
3 h. The heterogeneous mixture was filtered through a short pad
(0.5 × 1.0 cm) of silica gel, using EtOAc as a rinse. Evaporation of
the solvent gave 50 (62.6 mg, 100%) as a yellowish oil: [a]2D2 −32.21
7 The relevance of this property to malaria control has not been
established. For a review on malaria control, see: R. P. Tripathi, R. C.
Mishra, N. Dwivedi, N. Tewari and S. S. Verma, Current Med. Chem.,
2005, 12, 2643–2659, and references therein.
8 (a) Antitrypanosomal activity: P. S. Luize, T. Ueda-Nakamura, B. P. D.
Filho, D. A. G. Cortez and C. V. Nakamura, Biol. Pharm. Bull., 2006,
29, 2126–2130; (b) antibacterial activity: G. L. Pessini, B. P. D. Filho,
C. V. Nakamura and D. A. G. Cortez, Mem. Inst. Oswaldo Cruz, 2003,
98, 1115–1120; (c) antifungal activity: M. P. De Campos, V. C. Filho,
R. Z. Da Silva, R. A. Yunes, S. Zacchino, S. Juarez, R. C. Bella Cruz and
A. Bella Cruz, Biol. Pharm. Bull., 2005, 28, 1527–1530; (d) G. L. Pessini,
B. P. D. Philo, C. V. Nakamura and D. A. G. Cortez, J. Braz. Chem.
Soc., 2005, 16, 1130–1133; (e) photoprotective activity: M. Carini, G.
Aldini, M. Orioli and R. M. Facino, Planta Medica, 2002, 68, 193–197.
9 S. Apers, A. Vlietinck and L. Pieters, Phytochem. Rev., 2003, 2, 201–217.
10 T. Kurta´n, E. Baitz-Ga´cs, Z. Majer and S. Antus, J. Chem. Soc., Perkin
Trans. 1, 2000, 453–461.
1
(c 0.66, CHCl3); H NMR (C6D6, 400 MHz) d −0.10 (s, 3 H),
0.04 (s, 3 H), 0.87 (t, J = 7.3 Hz, 3 H), 0.97 (s, 9 H), 1.58–1.79 (m,
2 H), 4.51 (dd, J = 5.2, 7.0 Hz, 1 H), 7.07 (tt, J = 1.3, 6.7 Hz,
1 H), 7.16–7.19 (m, 2 H), 7.26–7.28 (m, 2 H); 13C NMR (C6D6,
100 MHz) d −4.8 (q), −4.5 (q), 10.2 (q), 18.4 (s), 26.1 (q), 34.0
(t), 76.7 (d), 126.2 (d), 127.2 (d), 128.3 (d), 145.8 (s); mmax (CHCl3
cast; cm−1) 3065, 3028, 2958, 2930, 2858, 1493, 1472, 1463, 1453,
1361, 1257, 1104, 1086, 1058, 1013, 860, 837, 775, 699; exact mass
m/z calcd for C15H26NaOSi 273.16451, found 273.16448.
11 For a recent application of the chiroptical rules, see: S. Garc´ıa-
´
Mun˜oz, M. Alvarez-Corral, L. Jime´nez-Gonza´lez, C. Lo´pez-Sa´nchez,
A. Rosales, M. Mun˜oz-Dorado and I. Rodr´ıguez-Garc´ıa, Tetrahedron,
2006, 62, 12182–12190.
12 (a) G. Snatzke and P. C. Ho, Tetrahedron, 1971, 27, 3645–3653;
(b) G. Snatzke, F. Znatzke, A. L. To¨ke´s, M. Ra´kosi and R. Bognar,
Tetrahedron, 1973, 29, 909–912.
13 H. Achenbach, W. Utz, A. Usubillaga and H. A. Rodriguez, Phyto-
chemistry, 1991, 30, 3753–3757.
14 For synthetic routes to neolignans, see: M. Sefkow, Synthesis, 2003,
2595–2625.
15 For a different approach to neolignan synthesis, see: M. Okazaki and
Y. Shuto, Biosci. Biotechnol. Biochem., 2001, 65, 1134–1140.
16 Preliminary communication: D. L. J. Clive and E. J. L. Stoffman, Chem.
Commun., 2007, 2151–2153.
Acknowledgements
We thank the Natural Sciences and Engineering Research Council
of Canada for financial support.
References
1 T. Hayashi and R. H. Thomson, Phytochemistry, 1975, 14, 1085–1087.
2 O. R. Gottlieb, Phytochemistry, 1972, 11, 1537–1570, especially p. 1546.
3 P. Sartorelli, P. J. C. Benevides, R. M. Ellensohn, M. V. A. F. Rocha,
P. R. H. Moreno and M. J. Kato, Plant Sci., 2001, 161, 1083–1088.
4 (a) E.g.: H. Achenbach, J. Gross, X. A. Dominguez, G. Cano, J. V. Star,
L. D. C. Brussolo, G. Mun˜oz, F. Salgado and L. Lo´pez, Phytochemistry,
1987, 26, 1159–1166; (b) X. A. Dominguez, C. Rombold, J. V. Star,
H. Achenbach and J. Gross, Phytochemistry, 1987, 26, 1821–1823;
(c) A. Arnone, V. Di Modugno, G. Nasini and I. Venturini, Gazz.
Chim. Ital., 1988, 118, 675–682; (d) H. Achenbach, W. Utz and X. A.
Dominguez, Phytochemistry, 1993, 34, 835–837; (e) A. M. Rimando,
J. M. Pezzuto, N. R. Farnsworth, T. Santisuk and V. Reutrakul, Nat.
Prod. Lett., 1994, 4, 267–272; (f) C. B. Bernard, H. G. Krishnamurty, D.
Chauret, T. Durst, B. J. R. Philoge`ne, P. Sa´nchez-Vindas, C. Hasbun,
L. Poveda, L. San Roma´n and J. T. Arnason, J. Chem. Ecol., 1995,
21, 801–814; (g) D. C. Chauret, C. B. Bernard, J. T. Arnason and T.
Durst, J. Nat. Prod., 1996, 59, 152–155; (h) H. Achenbach, W. Utz,
B. Lozano, E. M. G. Touche´ and S. Moreno, Phytochemistry, 1996,
43, 1093–1095; (i) N. H. Anh, H. Ripperger, T. V. Sung and G. Adam,
Phytochemistry, 1996, 42, 1167–1169; (j) N. H. Anh, H. Ripperger, A.
Porzel, T. V. Sung and G. Adam, Phytochemistry, 1997, 46, 569–571;
(k) P. J. C. Benevides, P. Sartorelli and M. J. Kato, Phytochemistry,
1999, 52, 339–343; (l) S. A. S. Silva, J. C. M. De Castro, T. G. Da Silva,
E. V. L. Da-Cunha, J. M. Barbosa-Filho and M. S. Da Silva, Nat. Prod.
Lett., 2001, 15, 323–329.
17 Use of flow methods for neolignan synthesis: I. R. Baxendale, C. M.
Griffiths-Jones, S. V. Ley and G. K. Tranmer, Synlett, 2006, 427–
430.
18 B. B. Snider, L. Han and C. Xie, J. Org. Chem., 1997, 62, 6978–6984.
19 Synthesis of ( )-epi-conocarpan: S.-L. Zheng, W.-Y. Yu, M.-X. Xu and
C.-M. Che, Tetrahedron Lett., 2003, 44, 1445–1447.
20 (a) See also: reference 21, page 19; (b) M. G. Finn, and K. B. Sharpless,
in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, Orlando,
1985, vol. 5, pp. 247–308, especially pp. 287–288.
21 T. Katsuki and V. S. Martin, Org. React., 1996, 48, 1–299.
22 We can find only one example of Sharpless epoxidation of a styrene
derivative with a para oxygen substituent (and no additional sub-
stituents) on the benzene ring, but it is a kinetic and not a preparative
experiment: S. S. Woodard, M. G. Finn and K. B. Sharpless, J. Am.
Chem. Soc., 1991, 113, 106–113.
23 When we tried the standard catalytic epoxidation (reference 24) we
observed very little, if any, reaction with 2 (R = Me or t-BuMe2Si).
24 (a) Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune
and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765–5780;
(b) we checked that our so-labeled (−)-diisopropyl tartrate was indeed
levorotatory.
25 For difficulties in making epoxides from p-methoxycinnamic esters,
see: M. Seki, T. Furutani, R. Imashiro, T. Kuroda, T. Yamanaka, N.
Harada, H. Arakawa, M. Kusama and T. Hashiyama, Tetrahedron
Lett., 2001, 42, 8201–8205.
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 1831–1842 | 1841
©